use of org.apache.hyracks.dataflow.std.buffermanager.PreferToSpillFullyOccupiedFramePolicy in project asterixdb by apache.
the class HashSpillableTableFactory method buildSpillableTable.
@Override
public ISpillableTable buildSpillableTable(final IHyracksTaskContext ctx, int suggestTableSize, long inputDataBytesSize, final int[] keyFields, final IBinaryComparator[] comparators, final INormalizedKeyComputer firstKeyNormalizerFactory, IAggregatorDescriptorFactory aggregateFactory, RecordDescriptor inRecordDescriptor, RecordDescriptor outRecordDescriptor, final int framesLimit, final int seed) throws HyracksDataException {
final int tableSize = suggestTableSize;
// For the output, we need to have at least one frame.
if (framesLimit < MIN_FRAME_LIMT) {
throw new HyracksDataException("The given frame limit is too small to partition the data.");
}
final int[] intermediateResultKeys = new int[keyFields.length];
for (int i = 0; i < keyFields.length; i++) {
intermediateResultKeys[i] = i;
}
final FrameTuplePairComparator ftpcInputCompareToAggregate = new FrameTuplePairComparator(keyFields, intermediateResultKeys, comparators);
final ITuplePartitionComputer tpc = new FieldHashPartitionComputerFamily(keyFields, hashFunctionFamilies).createPartitioner(seed);
// For calculating hash value for the already aggregated tuples (not incoming tuples)
// This computer is required to calculate the hash value of a aggregated tuple
// while doing the garbage collection work on Hash Table.
final ITuplePartitionComputer tpcIntermediate = new FieldHashPartitionComputerFamily(intermediateResultKeys, hashFunctionFamilies).createPartitioner(seed);
final IAggregatorDescriptor aggregator = aggregateFactory.createAggregator(ctx, inRecordDescriptor, outRecordDescriptor, keyFields, intermediateResultKeys, null);
final AggregateState aggregateState = aggregator.createAggregateStates();
final ArrayTupleBuilder stateTupleBuilder = new ArrayTupleBuilder(outRecordDescriptor.getFields().length);
//TODO(jf) research on the optimized partition size
long memoryBudget = Math.max(MIN_DATA_TABLE_FRAME_LIMT + MIN_HASH_TABLE_FRAME_LIMT, framesLimit - OUTPUT_FRAME_LIMT - MIN_HASH_TABLE_FRAME_LIMT);
final int numPartitions = getNumOfPartitions(inputDataBytesSize / ctx.getInitialFrameSize(), memoryBudget);
final int entriesPerPartition = (int) Math.ceil(1.0 * tableSize / numPartitions);
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.fine("created hashtable, table size:" + tableSize + " file size:" + inputDataBytesSize + " #partitions:" + numPartitions);
}
final ArrayTupleBuilder outputTupleBuilder = new ArrayTupleBuilder(outRecordDescriptor.getFields().length);
return new ISpillableTable() {
private final TuplePointer pointer = new TuplePointer();
private final BitSet spilledSet = new BitSet(numPartitions);
// This frame pool will be shared by both data table and hash table.
private final IDeallocatableFramePool framePool = new DeallocatableFramePool(ctx, framesLimit * ctx.getInitialFrameSize());
// buffer manager for hash table
private final ISimpleFrameBufferManager bufferManagerForHashTable = new FramePoolBackedFrameBufferManager(framePool);
private final ISerializableTable hashTableForTuplePointer = new SerializableHashTable(tableSize, ctx, bufferManagerForHashTable);
// buffer manager for data table
final IPartitionedTupleBufferManager bufferManager = new VPartitionTupleBufferManager(PreferToSpillFullyOccupiedFramePolicy.createAtMostOneFrameForSpilledPartitionConstrain(spilledSet), numPartitions, framePool);
final ITuplePointerAccessor bufferAccessor = bufferManager.getTuplePointerAccessor(outRecordDescriptor);
private final PreferToSpillFullyOccupiedFramePolicy spillPolicy = new PreferToSpillFullyOccupiedFramePolicy(bufferManager, spilledSet);
private final FrameTupleAppender outputAppender = new FrameTupleAppender(new VSizeFrame(ctx));
@Override
public void close() throws HyracksDataException {
hashTableForTuplePointer.close();
aggregator.close();
}
@Override
public void clear(int partition) throws HyracksDataException {
for (int p = getFirstEntryInHashTable(partition); p < getLastEntryInHashTable(partition); p++) {
hashTableForTuplePointer.delete(p);
}
// Checks whether the garbage collection is required and conducts a garbage collection if so.
if (hashTableForTuplePointer.isGarbageCollectionNeeded()) {
int numberOfFramesReclaimed = hashTableForTuplePointer.collectGarbage(bufferAccessor, tpcIntermediate);
if (LOGGER.isLoggable(Level.FINE)) {
LOGGER.fine("Garbage Collection on Hash table is done. Deallocated frames:" + numberOfFramesReclaimed);
}
}
bufferManager.clearPartition(partition);
}
private int getPartition(int entryInHashTable) {
return entryInHashTable / entriesPerPartition;
}
private int getFirstEntryInHashTable(int partition) {
return partition * entriesPerPartition;
}
private int getLastEntryInHashTable(int partition) {
return Math.min(tableSize, (partition + 1) * entriesPerPartition);
}
@Override
public boolean insert(IFrameTupleAccessor accessor, int tIndex) throws HyracksDataException {
int entryInHashTable = tpc.partition(accessor, tIndex, tableSize);
for (int i = 0; i < hashTableForTuplePointer.getTupleCount(entryInHashTable); i++) {
hashTableForTuplePointer.getTuplePointer(entryInHashTable, i, pointer);
bufferAccessor.reset(pointer);
int c = ftpcInputCompareToAggregate.compare(accessor, tIndex, bufferAccessor);
if (c == 0) {
aggregateExistingTuple(accessor, tIndex, bufferAccessor, pointer.getTupleIndex());
return true;
}
}
return insertNewAggregateEntry(entryInHashTable, accessor, tIndex);
}
/**
* Inserts a new aggregate entry into the data table and hash table.
* This insertion must be an atomic operation. We cannot have a partial success or failure.
* So, if an insertion succeeds on the data table and the same insertion on the hash table fails, then
* we need to revert the effect of data table insertion.
*/
private boolean insertNewAggregateEntry(int entryInHashTable, IFrameTupleAccessor accessor, int tIndex) throws HyracksDataException {
initStateTupleBuilder(accessor, tIndex);
int pid = getPartition(entryInHashTable);
// Insertion to the data table
if (!bufferManager.insertTuple(pid, stateTupleBuilder.getByteArray(), stateTupleBuilder.getFieldEndOffsets(), 0, stateTupleBuilder.getSize(), pointer)) {
return false;
}
// Insertion to the hash table
if (!hashTableForTuplePointer.insert(entryInHashTable, pointer)) {
// To preserve the atomicity of this method, we need to undo the effect
// of the above bufferManager.insertTuple() call since the given insertion has failed.
bufferManager.cancelInsertTuple(pid);
return false;
}
return true;
}
private void initStateTupleBuilder(IFrameTupleAccessor accessor, int tIndex) throws HyracksDataException {
stateTupleBuilder.reset();
for (int k = 0; k < keyFields.length; k++) {
stateTupleBuilder.addField(accessor, tIndex, keyFields[k]);
}
aggregator.init(stateTupleBuilder, accessor, tIndex, aggregateState);
}
private void aggregateExistingTuple(IFrameTupleAccessor accessor, int tIndex, ITuplePointerAccessor bufferAccessor, int tupleIndex) throws HyracksDataException {
aggregator.aggregate(accessor, tIndex, bufferAccessor, tupleIndex, aggregateState);
}
@Override
public int flushFrames(int partition, IFrameWriter writer, AggregateType type) throws HyracksDataException {
int count = 0;
for (int hashEntryPid = getFirstEntryInHashTable(partition); hashEntryPid < getLastEntryInHashTable(partition); hashEntryPid++) {
count += hashTableForTuplePointer.getTupleCount(hashEntryPid);
for (int tid = 0; tid < hashTableForTuplePointer.getTupleCount(hashEntryPid); tid++) {
hashTableForTuplePointer.getTuplePointer(hashEntryPid, tid, pointer);
bufferAccessor.reset(pointer);
outputTupleBuilder.reset();
for (int k = 0; k < intermediateResultKeys.length; k++) {
outputTupleBuilder.addField(bufferAccessor.getBuffer().array(), bufferAccessor.getAbsFieldStartOffset(intermediateResultKeys[k]), bufferAccessor.getFieldLength(intermediateResultKeys[k]));
}
boolean hasOutput = false;
switch(type) {
case PARTIAL:
hasOutput = aggregator.outputPartialResult(outputTupleBuilder, bufferAccessor, pointer.getTupleIndex(), aggregateState);
break;
case FINAL:
hasOutput = aggregator.outputFinalResult(outputTupleBuilder, bufferAccessor, pointer.getTupleIndex(), aggregateState);
break;
}
if (hasOutput && !outputAppender.appendSkipEmptyField(outputTupleBuilder.getFieldEndOffsets(), outputTupleBuilder.getByteArray(), 0, outputTupleBuilder.getSize())) {
outputAppender.write(writer, true);
if (!outputAppender.appendSkipEmptyField(outputTupleBuilder.getFieldEndOffsets(), outputTupleBuilder.getByteArray(), 0, outputTupleBuilder.getSize())) {
throw new HyracksDataException("The output item is too large to be fit into a frame.");
}
}
}
}
outputAppender.write(writer, true);
spilledSet.set(partition);
return count;
}
@Override
public int getNumPartitions() {
return bufferManager.getNumPartitions();
}
@Override
public int findVictimPartition(IFrameTupleAccessor accessor, int tIndex) throws HyracksDataException {
int entryInHashTable = tpc.partition(accessor, tIndex, tableSize);
int partition = getPartition(entryInHashTable);
return spillPolicy.selectVictimPartition(partition);
}
};
}
use of org.apache.hyracks.dataflow.std.buffermanager.PreferToSpillFullyOccupiedFramePolicy in project asterixdb by apache.
the class OptimizedHybridHashJoin method initBuild.
public void initBuild() throws HyracksDataException {
framePool = new DeallocatableFramePool(ctx, memSizeInFrames * ctx.getInitialFrameSize());
bufferManagerForHashTable = new FramePoolBackedFrameBufferManager(framePool);
bufferManager = new VPartitionTupleBufferManager(PreferToSpillFullyOccupiedFramePolicy.createAtMostOneFrameForSpilledPartitionConstrain(spilledStatus), numOfPartitions, framePool);
spillPolicy = new PreferToSpillFullyOccupiedFramePolicy(bufferManager, spilledStatus);
spilledStatus.clear();
buildPSizeInTups = new int[numOfPartitions];
}
Aggregations