Search in sources :

Example 1 with AbstractCoordinateOperation

use of org.apache.sis.referencing.operation.AbstractCoordinateOperation in project sis by apache.

the class EPSGFactoryTest method testTransformation.

/**
 * Tests "BD72 to WGS 84 (1)" (EPSG:1609) transformation. This one has an unusual unit for the
 * "Scale difference" parameter (EPSG:8611). The value is 0.999999 and the unit is "unity" (EPSG:9201)
 * instead of the usual "parts per million" (EPSG:9202).
 *
 * @throws FactoryException if an error occurred while querying the factory.
 */
@Test
@DependsOnMethod("testSimpleTransformation")
public void testTransformation() throws FactoryException {
    final EPSGFactory factory = TestFactorySource.factory;
    assumeNotNull(factory);
    final CoordinateOperation operation = factory.createCoordinateOperation("1609");
    assertEpsgNameAndIdentifierEqual("BD72 to WGS 84 (1)", 1609, operation);
    assertEquals(1.0, ((AbstractCoordinateOperation) operation).getLinearAccuracy(), STRICT);
    assertSame("Operation shall be cached", operation, factory.createCoordinateOperation("1609"));
}
Also used : AbstractCoordinateOperation(org.apache.sis.referencing.operation.AbstractCoordinateOperation) CoordinateOperation(org.opengis.referencing.operation.CoordinateOperation) Test(org.junit.Test) DependsOnMethod(org.apache.sis.test.DependsOnMethod)

Example 2 with AbstractCoordinateOperation

use of org.apache.sis.referencing.operation.AbstractCoordinateOperation in project sis by apache.

the class Shapes2D method transform.

/**
 * Transforms a rectangular envelope using the given coordinate operation.
 * The transformation is only approximative: the returned envelope may be bigger
 * than the smallest possible bounding box, but should not be smaller in most cases.
 *
 * <p>This method can handle the case where the rectangle contains the North or South pole,
 * or when it cross the ±180° longitude.</p>
 *
 * @param  operation    the operation to use. Source and target dimension must be 2.
 * @param  envelope     the rectangle to transform (may be {@code null}).
 * @param  destination  the destination rectangle (may be {@code envelope}).
 *         If {@code null}, a new rectangle will be created and returned.
 * @return {@code destination}, or a new rectangle if {@code destination} was non-null and {@code envelope} was null.
 * @throws TransformException if a transform failed.
 *
 * @see #transform(MathTransform2D, Rectangle2D, Rectangle2D)
 * @see Envelopes#transform(CoordinateOperation, Envelope)
 */
@SuppressWarnings("null")
public static Rectangle2D transform(final CoordinateOperation operation, final Rectangle2D envelope, Rectangle2D destination) throws TransformException {
    ArgumentChecks.ensureNonNull("operation", operation);
    if (envelope == null) {
        return null;
    }
    final MathTransform transform = operation.getMathTransform();
    if (!(transform instanceof MathTransform2D)) {
        throw new MismatchedDimensionException(Errors.format(Errors.Keys.IllegalPropertyValueClass_3, "transform", MathTransform2D.class, MathTransform.class));
    }
    MathTransform2D mt = (MathTransform2D) transform;
    final double[] center = new double[2];
    destination = transform(mt, envelope, destination, center);
    /*
         * If the source envelope crosses the expected range of valid coordinates, also projects
         * the range bounds as a safety. See the comments in transform(Envelope, ...).
         */
    final CoordinateReferenceSystem sourceCRS = operation.getSourceCRS();
    if (sourceCRS != null) {
        final CoordinateSystem cs = sourceCRS.getCoordinateSystem();
        if (cs != null && cs.getDimension() == 2) {
            // Paranoiac check.
            CoordinateSystemAxis axis = cs.getAxis(0);
            double min = envelope.getMinX();
            double max = envelope.getMaxX();
            Point2D.Double pt = null;
            for (int i = 0; i < 4; i++) {
                if (i == 2) {
                    axis = cs.getAxis(1);
                    min = envelope.getMinY();
                    max = envelope.getMaxY();
                }
                final double v = (i & 1) == 0 ? axis.getMinimumValue() : axis.getMaximumValue();
                if (!(v > min && v < max)) {
                    continue;
                }
                if (pt == null) {
                    pt = new Point2D.Double();
                }
                if ((i & 2) == 0) {
                    pt.x = v;
                    pt.y = envelope.getCenterY();
                } else {
                    pt.x = envelope.getCenterX();
                    pt.y = v;
                }
                destination.add(mt.transform(pt, pt));
            }
        }
    }
    /*
         * Now take the target CRS in account.
         */
    final CoordinateReferenceSystem targetCRS = operation.getTargetCRS();
    if (targetCRS == null) {
        return destination;
    }
    final CoordinateSystem targetCS = targetCRS.getCoordinateSystem();
    if (targetCS == null || targetCS.getDimension() != 2) {
        // It should be an error, but we keep this method tolerant.
        return destination;
    }
    /*
         * Checks for singularity points. See the Envelopes.transform(CoordinateOperation, Envelope)
         * method for comments about the algorithm. The code below is the same algorithm adapted for
         * the 2D case and the related objects (Point2D, Rectangle2D, etc.).
         *
         * The 'border' variable in the loop below is used in order to compress 2 dimensions
         * and 2 extremums in a single loop, in this order: (xmin, xmax, ymin, ymax).
         */
    TransformException warning = null;
    Point2D sourcePt = null;
    Point2D targetPt = null;
    // A bitmask for each (dimension, extremum) pairs.
    int includedBoundsValue = 0;
    for (int border = 0; border < 4; border++) {
        // 2 dimensions and 2 extremums compacted in a flag.
        // The dimension index being examined.
        final int dimension = border >>> 1;
        final CoordinateSystemAxis axis = targetCS.getAxis(dimension);
        if (axis == null) {
            // Should never be null, but check as a paranoiac safety.
            continue;
        }
        final double extremum = (border & 1) == 0 ? axis.getMinimumValue() : axis.getMaximumValue();
        if (Double.isInfinite(extremum) || Double.isNaN(extremum)) {
            continue;
        }
        if (targetPt == null) {
            try {
                mt = mt.inverse();
            } catch (NoninvertibleTransformException exception) {
                Envelopes.recoverableException(Shapes2D.class, exception);
                return destination;
            }
            targetPt = new Point2D.Double();
        }
        switch(dimension) {
            case 0:
                targetPt.setLocation(extremum, center[1]);
                break;
            case 1:
                targetPt.setLocation(center[0], extremum);
                break;
            default:
                throw new AssertionError(border);
        }
        try {
            sourcePt = mt.transform(targetPt, sourcePt);
        } catch (TransformException exception) {
            if (warning == null) {
                warning = exception;
            } else {
                warning.addSuppressed(exception);
            }
            continue;
        }
        if (envelope.contains(sourcePt)) {
            destination.add(targetPt);
            includedBoundsValue |= (1 << border);
        }
    }
    /*
         * Iterate over all dimensions of type "WRAPAROUND" for which minimal or maximal axis
         * values have not yet been included in the envelope. We could inline this check inside
         * the above loop, but we don't in order to have a chance to exclude the dimensions for
         * which the point have already been added.
         *
         * See transform(CoordinateOperation, Envelope) for more comments about the algorithm.
         */
    if (includedBoundsValue != 0) {
        /*
             * Bits mask transformation:
             *   1) Swaps the two dimensions               (YyXx  →  XxYy)
             *   2) Insert a space between each bits       (XxYy  →  X.x.Y.y.)
             *   3) Fill the space with duplicated values  (X.x.Y.y.  →  XXxxYYyy)
             *
             * In terms of bit positions 1,2,4,8 (not bit values), we have:
             *
             *   8421  →  22881144
             *   i.e. (ymax, ymin, xmax, xmin)  →  (xmax², ymax², xmin², ymin²)
             *
             * Now look at the last part: (xmin², ymin²). The next step is to perform a bitwise
             * AND operation in order to have only both of the following conditions:
             *
             *   Borders not yet added to the envelope: ~(ymax, ymin, xmax, xmin)
             *   Borders in which a singularity exists:  (xmin, xmin, ymin, ymin)
             *
             * The same operation is repeated on the next 4 bits for (xmax, xmax, ymax, ymax).
             */
        int toTest = ((includedBoundsValue & 1) << 3) | ((includedBoundsValue & 4) >>> 1) | ((includedBoundsValue & 2) << 6) | ((includedBoundsValue & 8) << 2);
        // Duplicate the bit values.
        toTest |= (toTest >>> 1);
        toTest &= ~(includedBoundsValue | (includedBoundsValue << 4));
        /*
             * Forget any axes that are not of kind "WRAPAROUND". Then get the final
             * bit pattern indicating which points to test. Iterate over that bits.
             */
        if ((toTest & 0x33333333) != 0 && !CoordinateOperations.isWrapAround(targetCS.getAxis(0)))
            toTest &= 0xCCCCCCCC;
        if ((toTest & 0xCCCCCCCC) != 0 && !CoordinateOperations.isWrapAround(targetCS.getAxis(1)))
            toTest &= 0x33333333;
        while (toTest != 0) {
            final int border = Integer.numberOfTrailingZeros(toTest);
            final int bitMask = 1 << border;
            // Clear now the bit, for the next iteration.
            toTest &= ~bitMask;
            final int dimensionToAdd = (border >>> 1) & 1;
            final CoordinateSystemAxis toAdd = targetCS.getAxis(dimensionToAdd);
            final CoordinateSystemAxis added = targetCS.getAxis(dimensionToAdd ^ 1);
            double x = (border & 1) == 0 ? toAdd.getMinimumValue() : toAdd.getMaximumValue();
            double y = (border & 4) == 0 ? added.getMinimumValue() : added.getMaximumValue();
            if (dimensionToAdd != 0) {
                final double t = x;
                x = y;
                y = t;
            }
            targetPt.setLocation(x, y);
            try {
                sourcePt = mt.transform(targetPt, sourcePt);
            } catch (TransformException exception) {
                if (warning == null) {
                    warning = exception;
                } else {
                    warning.addSuppressed(exception);
                }
                continue;
            }
            if (envelope.contains(sourcePt)) {
                destination.add(targetPt);
            }
        }
    }
    /*
         * At this point we finished envelope transformation. Verify if some ordinates need to be "wrapped around"
         * as a result of the coordinate operation.   This is usually the longitude axis where the source CRS uses
         * the [-180 … +180]° range and the target CRS uses the [0 … 360]° range, or the converse. In such case we
         * set the rectangle to the full range (we do not use the mechanism documented in Envelope2D) because most
         * Rectangle2D implementations do not support spanning the anti-meridian. This results in larger rectangle
         * than what would be possible with GeneralEnvelope or Envelope2D, but we try to limit the situation where
         * this expansion is applied.
         */
    final Set<Integer> wrapAroundChanges;
    if (operation instanceof AbstractCoordinateOperation) {
        wrapAroundChanges = ((AbstractCoordinateOperation) operation).getWrapAroundChanges();
    } else {
        wrapAroundChanges = CoordinateOperations.wrapAroundChanges(sourceCRS, targetCS);
    }
    for (int dim : wrapAroundChanges) {
        // Empty in the vast majority of cases.
        final CoordinateSystemAxis axis = targetCS.getAxis(dim);
        final double minimum = axis.getMinimumValue();
        final double maximum = axis.getMaximumValue();
        final double o1, o2;
        if (dim == 0) {
            o1 = destination.getMinX();
            o2 = destination.getMaxX();
        } else {
            o1 = destination.getMinY();
            o2 = destination.getMaxY();
        }
        if (o1 < minimum || o2 > maximum) {
            final double span = maximum - minimum;
            if (dim == 0) {
                destination.setRect(minimum, destination.getY(), span, destination.getHeight());
            } else {
                destination.setRect(destination.getX(), minimum, destination.getWidth(), span);
            }
        }
    }
    if (warning != null) {
        Envelopes.recoverableException(Shapes2D.class, warning);
    }
    return destination;
}
Also used : MathTransform(org.opengis.referencing.operation.MathTransform) CoordinateSystem(org.opengis.referencing.cs.CoordinateSystem) NoninvertibleTransformException(org.opengis.referencing.operation.NoninvertibleTransformException) TransformException(org.opengis.referencing.operation.TransformException) CoordinateSystemAxis(org.opengis.referencing.cs.CoordinateSystemAxis) MismatchedDimensionException(org.opengis.geometry.MismatchedDimensionException) NoninvertibleTransformException(org.opengis.referencing.operation.NoninvertibleTransformException) Point2D(java.awt.geom.Point2D) MathTransform2D(org.opengis.referencing.operation.MathTransform2D) CoordinateReferenceSystem(org.opengis.referencing.crs.CoordinateReferenceSystem) AbstractCoordinateOperation(org.apache.sis.referencing.operation.AbstractCoordinateOperation)

Example 3 with AbstractCoordinateOperation

use of org.apache.sis.referencing.operation.AbstractCoordinateOperation in project sis by apache.

the class Envelopes method transform.

/**
 * Transforms an envelope using the given coordinate operation.
 * The transformation is only approximative: the returned envelope may be bigger than the
 * smallest possible bounding box, but should not be smaller in most cases.
 *
 * <p>This method can handle the case where the envelope contains the North or South pole,
 * or when it cross the ±180° longitude.</p>
 *
 * <div class="note"><b>Note:</b>
 * If the envelope CRS is non-null, then the caller should ensure that the operation source CRS
 * is the same than the envelope CRS. In case of mismatch, this method transforms the envelope
 * to the operation source CRS before to apply the operation. This extra step may cause a lost
 * of accuracy. In order to prevent this method from performing such pre-transformation (if not desired),
 * callers can ensure that the envelope CRS is {@code null} before to call this method.</div>
 *
 * @param  operation  the operation to use.
 * @param  envelope   envelope to transform, or {@code null}. This envelope will not be modified.
 * @return the transformed envelope, or {@code null} if {@code envelope} was null.
 * @throws TransformException if a transform failed.
 *
 * @see #transform(MathTransform, Envelope)
 *
 * @since 0.5
 */
@SuppressWarnings("null")
public static GeneralEnvelope transform(final CoordinateOperation operation, Envelope envelope) throws TransformException {
    ensureNonNull("operation", operation);
    if (envelope == null) {
        return null;
    }
    boolean isOperationComplete = true;
    final CoordinateReferenceSystem sourceCRS = operation.getSourceCRS();
    if (sourceCRS != null) {
        final CoordinateReferenceSystem crs = envelope.getCoordinateReferenceSystem();
        if (crs != null && !Utilities.equalsIgnoreMetadata(crs, sourceCRS)) {
            /*
                 * Argument-check: the envelope CRS seems inconsistent with the given operation.
                 * However we need to push the check a little bit further, since 3D-GeographicCRS
                 * are considered not equal to CompoundCRS[2D-GeographicCRS + ellipsoidal height].
                 * Checking for identity MathTransform is a more powerfull (but more costly) check.
                 * Since we have the MathTransform, perform an opportunist envelope transform if it
                 * happen to be required.
                 */
            final MathTransform mt;
            try {
                mt = CoordinateOperations.factory().createOperation(crs, sourceCRS).getMathTransform();
            } catch (FactoryException e) {
                throw new TransformException(Errors.format(Errors.Keys.CanNotTransformEnvelope), e);
            }
            if (!mt.isIdentity()) {
                isOperationComplete = false;
                envelope = transform(mt, envelope);
            }
        }
    }
    MathTransform mt = operation.getMathTransform();
    final double[] centerPt = new double[mt.getTargetDimensions()];
    final GeneralEnvelope transformed = transform(mt, envelope, centerPt);
    /*
         * If the source envelope crosses the expected range of valid coordinates, also projects
         * the range bounds as a safety. Example: if the source envelope goes from 150 to 200°E,
         * some map projections will interpret 200° as if it was -160°, and consequently produce
         * an envelope which do not include the 180°W extremum. We will add those extremum points
         * explicitly as a safety. It may leads to bigger than necessary target envelope, but the
         * contract is to include at least the source envelope, not to return the smallest one.
         */
    if (sourceCRS != null) {
        final CoordinateSystem cs = sourceCRS.getCoordinateSystem();
        if (cs != null) {
            // Should never be null, but check as a paranoiac safety.
            DirectPosition sourcePt = null;
            DirectPosition targetPt = null;
            final int dimension = cs.getDimension();
            for (int i = 0; i < dimension; i++) {
                final CoordinateSystemAxis axis = cs.getAxis(i);
                if (axis == null) {
                    // Should never be null, but check as a paranoiac safety.
                    continue;
                }
                final double min = envelope.getMinimum(i);
                final double max = envelope.getMaximum(i);
                final double v1 = axis.getMinimumValue();
                final double v2 = axis.getMaximumValue();
                final boolean b1 = (v1 > min && v1 < max);
                final boolean b2 = (v2 > min && v2 < max);
                if (!b1 && !b2) {
                    continue;
                }
                if (sourcePt == null) {
                    sourcePt = new GeneralDirectPosition(dimension);
                    for (int j = 0; j < dimension; j++) {
                        sourcePt.setOrdinate(j, envelope.getMedian(j));
                    }
                }
                if (b1) {
                    sourcePt.setOrdinate(i, v1);
                    transformed.add(targetPt = mt.transform(sourcePt, targetPt));
                }
                if (b2) {
                    sourcePt.setOrdinate(i, v2);
                    transformed.add(targetPt = mt.transform(sourcePt, targetPt));
                }
                sourcePt.setOrdinate(i, envelope.getMedian(i));
            }
        }
    }
    /*
         * Now takes the target CRS in account...
         */
    final CoordinateReferenceSystem targetCRS = operation.getTargetCRS();
    if (targetCRS == null) {
        return transformed;
    }
    transformed.setCoordinateReferenceSystem(targetCRS);
    final CoordinateSystem targetCS = targetCRS.getCoordinateSystem();
    if (targetCS == null) {
        // It should be an error, but we keep this method tolerant.
        return transformed;
    }
    /*
         * Checks for singularity points. For example the south pole is a singularity point in
         * geographic CRS because is is located at the maximal value allowed by one particular
         * axis, namely latitude. This point is not a singularity in the stereographic projection,
         * because axes extends toward infinity in all directions (mathematically) and because the
         * South pole has nothing special apart being the origin (0,0).
         *
         * Algorithm:
         *
         * 1) Inspect the target axis, looking if there is any bounds. If bounds are found, get
         *    the coordinates of singularity points and project them from target to source CRS.
         *
         *    Example: If the transformed envelope above is (80 … 85°S, 10 … 50°W), and if the
         *             latitude in the target CRS is bounded at 90°S, then project (90°S, 30°W)
         *             to the source CRS. Note that the longitude is set to the the center of
         *             the envelope longitude range (more on this below).
         *
         * 2) If the singularity point computed above is inside the source envelope, add that
         *    point to the target (transformed) envelope.
         *
         * 3) If step #2 added the point, iterate over all other axes. If an other bounded axis
         *    is found and that axis is of kind "WRAPAROUND", test for inclusion the same point
         *    than the point tested at step #1, except for the ordinate of the axis found in this
         *    step. That ordinate is set to the minimal and maximal values of that axis.
         *
         *    Example: If the above steps found that the point (90°S, 30°W) need to be included,
         *             then this step #3 will also test the points (90°S, 180°W) and (90°S, 180°E).
         *
         * NOTE: we test (-180°, centerY), (180°, centerY), (centerX, -90°) and (centerX, 90°)
         * at step #1 before to test (-180°, -90°), (180°, -90°), (-180°, 90°) and (180°, 90°)
         * at step #3 because the later may not be supported by every projections. For example
         * if the target envelope is located between 20°N and 40°N, then a Mercator projection
         * may fail to transform the (-180°, 90°) coordinate while the (-180°, 30°) coordinate
         * is a valid point.
         */
    TransformException warning = null;
    AbstractEnvelope generalEnvelope = null;
    DirectPosition sourcePt = null;
    DirectPosition targetPt = null;
    // A bitmask for each dimension.
    long includedMinValue = 0;
    long includedMaxValue = 0;
    long isWrapAroundAxis = 0;
    long dimensionBitMask = 1;
    final int dimension = targetCS.getDimension();
    poles: for (int i = 0; i < dimension; i++, dimensionBitMask <<= 1) {
        final CoordinateSystemAxis axis = targetCS.getAxis(i);
        if (axis == null) {
            // Should never be null, but check as a paranoiac safety.
            continue;
        }
        // Tells if we are testing the minimal or maximal value.
        boolean testMax = false;
        do {
            final double extremum = testMax ? axis.getMaximumValue() : axis.getMinimumValue();
            if (Double.isInfinite(extremum) || Double.isNaN(extremum)) {
                /*
                     * The axis is unbounded. It should always be the case when the target CRS is
                     * a map projection, in which case this loop will finish soon and this method
                     * will do nothing more (no object instantiated, no MathTransform inversed...)
                     */
                continue;
            }
            if (targetPt == null) {
                try {
                    mt = mt.inverse();
                } catch (NoninvertibleTransformException exception) {
                    /*
                         * If the transform is non invertible, this method can't do anything. This
                         * is not a fatal error because the envelope has already be transformed by
                         * the caller. We lost the check for singularity points performed by this
                         * method, but it make no difference in the common case where the source
                         * envelope didn't contains any of those points.
                         *
                         * Note that this exception is normal if target dimension is smaller than
                         * source dimension, since the math transform can not reconstituate the
                         * lost dimensions. So we don't log any warning in this case.
                         */
                    if (dimension >= mt.getSourceDimensions()) {
                        warning = exception;
                    }
                    break poles;
                }
                targetPt = new GeneralDirectPosition(mt.getSourceDimensions());
                for (int j = 0; j < dimension; j++) {
                    targetPt.setOrdinate(j, centerPt[j]);
                }
                // TODO: avoid the hack below if we provide a contains(DirectPosition)
                // method in the GeoAPI org.opengis.geometry.Envelope interface.
                generalEnvelope = AbstractEnvelope.castOrCopy(envelope);
            }
            targetPt.setOrdinate(i, extremum);
            try {
                sourcePt = mt.transform(targetPt, sourcePt);
            } catch (TransformException exception) {
                /*
                     * This exception may be normal. For example if may occur when projecting
                     * the latitude extremums with a cylindrical Mercator projection.  Do not
                     * log any message (unless logging level is fine) and try the other points.
                     */
                if (warning == null) {
                    warning = exception;
                } else {
                    warning.addSuppressed(exception);
                }
                continue;
            }
            if (generalEnvelope.contains(sourcePt)) {
                transformed.add(targetPt);
                if (testMax)
                    includedMaxValue |= dimensionBitMask;
                else
                    includedMinValue |= dimensionBitMask;
            }
        } while ((testMax = !testMax) == true);
        /*
             * Keep trace of axes of kind WRAPAROUND, except if the two extremum values of that
             * axis have been included in the envelope  (in which case the next step after this
             * loop doesn't need to be executed for that axis).
             */
        if ((includedMinValue & includedMaxValue & dimensionBitMask) == 0 && CoordinateOperations.isWrapAround(axis)) {
            isWrapAroundAxis |= dimensionBitMask;
        }
        // Restore 'targetPt' to its initial state, which is equals to 'centerPt'.
        if (targetPt != null) {
            targetPt.setOrdinate(i, centerPt[i]);
        }
    }
    /*
         * Step #3 described in the above "Algorithm" section: iterate over all dimensions
         * of type "WRAPAROUND" for which minimal or maximal axis values have not yet been
         * included in the envelope. The set of axes is specified by a bitmask computed in
         * the above loop.  We examine only the points that have not already been included
         * in the envelope.
         */
    final long includedBoundsValue = (includedMinValue | includedMaxValue);
    if (includedBoundsValue != 0) {
        while (isWrapAroundAxis != 0) {
            final int wrapAroundDimension = Long.numberOfTrailingZeros(isWrapAroundAxis);
            dimensionBitMask = 1 << wrapAroundDimension;
            // Clear now the bit, for the next iteration.
            isWrapAroundAxis &= ~dimensionBitMask;
            final CoordinateSystemAxis wrapAroundAxis = targetCS.getAxis(wrapAroundDimension);
            final double min = wrapAroundAxis.getMinimumValue();
            final double max = wrapAroundAxis.getMaximumValue();
            /*
                 * Iterate over all axes for which a singularity point has been previously found,
                 * excluding the "wrap around axis" currently under consideration.
                 */
            for (long am = (includedBoundsValue & ~dimensionBitMask), bm; am != 0; am &= ~bm) {
                bm = Long.lowestOneBit(am);
                final int axisIndex = Long.numberOfTrailingZeros(bm);
                final CoordinateSystemAxis axis = targetCS.getAxis(axisIndex);
                /*
                     * switch (c) {
                     *   case 0: targetPt = (..., singularityMin, ..., wrapAroundMin, ...)
                     *   case 1: targetPt = (..., singularityMin, ..., wrapAroundMax, ...)
                     *   case 2: targetPt = (..., singularityMax, ..., wrapAroundMin, ...)
                     *   case 3: targetPt = (..., singularityMax, ..., wrapAroundMax, ...)
                     * }
                     */
                for (int c = 0; c < 4; c++) {
                    /*
                         * Set the ordinate value along the axis having the singularity point
                         * (cases c=0 and c=2).  If the envelope did not included that point,
                         * then skip completely this case and the next one, i.e. skip c={0,1}
                         * or skip c={2,3}.
                         */
                    double value = max;
                    if ((c & 1) == 0) {
                        // 'true' if we are testing "wrapAroundMin".
                        if (((c == 0 ? includedMinValue : includedMaxValue) & bm) == 0) {
                            // Skip also the case for "wrapAroundMax".
                            c++;
                            continue;
                        }
                        targetPt.setOrdinate(axisIndex, (c == 0) ? axis.getMinimumValue() : axis.getMaximumValue());
                        value = min;
                    }
                    targetPt.setOrdinate(wrapAroundDimension, value);
                    try {
                        sourcePt = mt.transform(targetPt, sourcePt);
                    } catch (TransformException exception) {
                        if (warning == null) {
                            warning = exception;
                        } else {
                            warning.addSuppressed(exception);
                        }
                        continue;
                    }
                    if (generalEnvelope.contains(sourcePt)) {
                        transformed.add(targetPt);
                    }
                }
                targetPt.setOrdinate(axisIndex, centerPt[axisIndex]);
            }
            targetPt.setOrdinate(wrapAroundDimension, centerPt[wrapAroundDimension]);
        }
    }
    /*
         * At this point we finished envelope transformation. Verify if some ordinates need to be "wrapped around"
         * as a result of the coordinate operation.  This is usually the longitude axis where the source CRS uses
         * the [-180 … +180]° range and the target CRS uses the [0 … 360]° range, or the converse. We do not wrap
         * around if the source and target axes use the same range (e.g. the longitude stay [-180 … +180]°) in order
         * to reduce the risk of discontinuities. If the user really wants unconditional wrap around, (s)he can call
         * GeneralEnvelope.normalize().
         */
    final Set<Integer> wrapAroundChanges;
    if (isOperationComplete && operation instanceof AbstractCoordinateOperation) {
        wrapAroundChanges = ((AbstractCoordinateOperation) operation).getWrapAroundChanges();
    } else {
        wrapAroundChanges = CoordinateOperations.wrapAroundChanges(sourceCRS, targetCS);
    }
    transformed.normalize(targetCS, 0, wrapAroundChanges.size(), wrapAroundChanges.iterator());
    if (warning != null) {
        recoverableException(Envelopes.class, warning);
    }
    return transformed;
}
Also used : DirectPosition(org.opengis.geometry.DirectPosition) AbstractMathTransform(org.apache.sis.referencing.operation.transform.AbstractMathTransform) MathTransform(org.opengis.referencing.operation.MathTransform) FactoryException(org.opengis.util.FactoryException) CoordinateSystem(org.opengis.referencing.cs.CoordinateSystem) NoninvertibleTransformException(org.opengis.referencing.operation.NoninvertibleTransformException) TransformException(org.opengis.referencing.operation.TransformException) CoordinateSystemAxis(org.opengis.referencing.cs.CoordinateSystemAxis) NoninvertibleTransformException(org.opengis.referencing.operation.NoninvertibleTransformException) CoordinateReferenceSystem(org.opengis.referencing.crs.CoordinateReferenceSystem) AbstractCoordinateOperation(org.apache.sis.referencing.operation.AbstractCoordinateOperation)

Aggregations

AbstractCoordinateOperation (org.apache.sis.referencing.operation.AbstractCoordinateOperation)3 CoordinateReferenceSystem (org.opengis.referencing.crs.CoordinateReferenceSystem)2 CoordinateSystem (org.opengis.referencing.cs.CoordinateSystem)2 CoordinateSystemAxis (org.opengis.referencing.cs.CoordinateSystemAxis)2 MathTransform (org.opengis.referencing.operation.MathTransform)2 NoninvertibleTransformException (org.opengis.referencing.operation.NoninvertibleTransformException)2 TransformException (org.opengis.referencing.operation.TransformException)2 Point2D (java.awt.geom.Point2D)1 AbstractMathTransform (org.apache.sis.referencing.operation.transform.AbstractMathTransform)1 DependsOnMethod (org.apache.sis.test.DependsOnMethod)1 Test (org.junit.Test)1 DirectPosition (org.opengis.geometry.DirectPosition)1 MismatchedDimensionException (org.opengis.geometry.MismatchedDimensionException)1 CoordinateOperation (org.opengis.referencing.operation.CoordinateOperation)1 MathTransform2D (org.opengis.referencing.operation.MathTransform2D)1 FactoryException (org.opengis.util.FactoryException)1