use of org.apache.sis.referencing.operation.DefaultConversion in project sis by apache.
the class DefaultMathTransformFactoryTest method testAllMapProjections.
/**
* Tests the creation of all registered map projections.
* Only the semi-axis lengths are specified. For the rest, we rely on default values.
*
* @throws FactoryException if the construction of a map projection failed.
*
* @since 0.7
*/
@Test
public void testAllMapProjections() throws FactoryException {
/*
* Gets all map projections and creates a projection using the WGS84 ellipsoid
* and default parameter values.
*/
final Map<String, ?> dummyName = Collections.singletonMap(DefaultProjectedCRS.NAME_KEY, "Test");
final MathTransformFactory mtFactory = DefaultFactories.forBuildin(MathTransformFactory.class);
final Collection<OperationMethod> methods = mtFactory.getAvailableMethods(Projection.class);
for (final OperationMethod method : methods) {
final String classification = method.getName().getCode();
ParameterValueGroup param = mtFactory.getDefaultParameters(classification);
param.parameter("semi_major").setValue(6377563.396);
param.parameter("semi_minor").setValue(6356256.909237285);
final MathTransform mt;
try {
mt = mtFactory.createParameterizedTransform(param);
} catch (InvalidGeodeticParameterException e) {
/*
* Some map projections have mandatory parameters which we ignore for now
* except for a few well-known projection that we know should not fail.
*/
if (classification.contains("Mercator")) {
throw e;
}
out.print(classification);
out.print(CharSequences.spaces(42 - classification.length()));
out.print(": ");
out.println(e.getLocalizedMessage());
continue;
}
/*
* Verifies that the map projection properties are the ones that we specified.
* Note that the Equirectangular projection has been optimized as an affine transform, which we skip.
*/
if (mt instanceof LinearTransform) {
continue;
}
assertInstanceOf(classification, Parameterized.class, mt);
param = ((Parameterized) mt).getParameterValues();
assertEquals(classification, param.getDescriptor().getName().getCode());
assertEquals(classification, 6377563.396, param.parameter("semi_major").doubleValue(), 1E-4);
assertEquals(classification, 6356256.909237285, param.parameter("semi_minor").doubleValue(), 1E-4);
/*
* Creates a ProjectedCRS from the map projection. This part is more an integration test than
* a DefaultMathTransformFactory test. Again, the intent is to verify that the properties are
* the one that we specified.
*/
final DefaultProjectedCRS crs = new DefaultProjectedCRS(dummyName, CommonCRS.WGS84.normalizedGeographic(), new DefaultConversion(dummyName, method, mt, null), HardCodedCS.PROJECTED);
final Conversion projection = crs.getConversionFromBase();
assertSame(classification, mt, projection.getMathTransform());
assertEquals(classification, projection.getMethod().getName().getCode());
}
}
use of org.apache.sis.referencing.operation.DefaultConversion in project sis by apache.
the class Proj4Factory method createCRS.
/**
* Creates a coordinate reference system from the given {@literal Proj.4} wrapper.
* The given {@code pj} will be stored as the CRS identifier.
*
* @param pj the Proj.4 object to wrap.
* @param withHeight whether to include a height axis.
* @throws IllegalArgumentException if a Proj.4 parameter value can not be parsed or assigned.
* @throws ParserException if a unit symbol can not be parsed.
*/
private CoordinateReferenceSystem createCRS(final PJ pj, final boolean withHeight) throws FactoryException {
final PJ.Type type = pj.getType();
final boolean geographic = PJ.Type.GEOGRAPHIC.equals(type);
final boolean geocentric = PJ.Type.GEOCENTRIC.equals(type);
final Proj4Parser parser = new Proj4Parser(pj.getCode());
final String dir = parser.value("axis", "enu");
final CoordinateSystemAxis[] axes = new CoordinateSystemAxis[geocentric | withHeight ? dir.length() : 2];
for (int i = 0; i < axes.length; i++) {
final char d = Character.toLowerCase(dir.charAt(i));
char abbreviation = Character.toUpperCase(d);
boolean vertical = false;
final AxisDirection c;
final String name;
if (geocentric)
switch(d) {
case 'e':
c = AxisDirection.GEOCENTRIC_X;
name = "Geocentric X";
break;
case 'n':
c = AxisDirection.GEOCENTRIC_Y;
name = "Geocentric Y";
break;
case 'u':
c = AxisDirection.GEOCENTRIC_Z;
name = "Geocentric Z";
break;
default:
c = AxisDirection.OTHER;
name = "Unknown";
break;
}
else
switch(d) {
case 'e':
c = AxisDirection.EAST;
name = geographic ? "Geodetic longitude" : "Easting";
break;
case 'w':
c = AxisDirection.WEST;
name = geographic ? "Geodetic longitude" : "Westing";
break;
case 'n':
c = AxisDirection.NORTH;
name = geographic ? "Geodetic latitude" : "Northing";
break;
case 's':
c = AxisDirection.SOUTH;
name = geographic ? "Geodetic latitude" : "Southing";
break;
case 'u':
c = AxisDirection.UP;
name = "Height";
vertical = true;
abbreviation = 'h';
break;
case 'd':
c = AxisDirection.DOWN;
name = "Depth";
vertical = true;
break;
default:
c = AxisDirection.OTHER;
name = "Unknown";
break;
}
if (geographic && AxisDirections.isCardinal(c)) {
abbreviation = (d == 'e' || d == 'w') ? 'λ' : 'φ';
}
final Unit<?> unit = (vertical || !geographic) ? parser.unit(vertical) : Units.DEGREE;
axes[i] = csFactory.createCoordinateSystemAxis(identifier(name), String.valueOf(abbreviation).intern(), c, unit);
}
/*
* At this point we got the coordinate system axes. Now create the CRS. The given Proj.4 object
* will be stored as the CRS identifier for allowing OperationFactory to get it back before to
* attempt to create a new one for a given CRS.
*/
final Map<String, Object> csName = identifier(UNNAMED);
final Map<String, Object> name = new HashMap<>(identifier(parser.name(type == PJ.Type.PROJECTED)));
name.put(CoordinateReferenceSystem.IDENTIFIERS_KEY, pj);
switch(type) {
case GEOGRAPHIC:
{
return crsFactory.createGeographicCRS(name, createDatum(pj, parser), withHeight ? csFactory.createEllipsoidalCS(csName, axes[0], axes[1], axes[2]) : csFactory.createEllipsoidalCS(csName, axes[0], axes[1]));
}
case GEOCENTRIC:
{
return crsFactory.createGeocentricCRS(name, createDatum(pj, parser), csFactory.createCartesianCS(csName, axes[0], axes[1], axes[2]));
}
case PROJECTED:
{
final PJ base = unique(new PJ(pj));
final CoordinateReferenceSystem baseCRS = createCRS(base, withHeight);
final Transform tr = new Transform(pj, withHeight, base, withHeight);
/*
* Try to convert the Proj.4 parameters into OGC parameters in order to have a less opaque structure.
* Failure to perform this conversion will not cause a failure to create the ProjectedCRS. After all,
* maybe the user invokes this method for using a map projection not yet supported by Apache SIS.
* Instead, fallback on the more opaque Transform.METHOD description. Apache SIS will not be able to
* perform analysis on those parameters, but it will not prevent the Proj.4 transformation to work.
*/
OperationMethod method;
ParameterValueGroup parameters;
try {
method = parser.method(opFactory());
parameters = parser.parameters();
} catch (IllegalArgumentException | FactoryException e) {
Logging.recoverableException(Logging.getLogger(Modules.GDAL), Proj4Factory.class, "createProjectedCRS", e);
method = Transform.METHOD;
// Will let Apache SIS infers the parameters from the Transform instance.
parameters = null;
}
final Conversion fromBase = new DefaultConversion(name, method, tr, parameters);
return crsFactory.createProjectedCRS(name, (GeographicCRS) baseCRS, fromBase, withHeight ? csFactory.createCartesianCS(csName, axes[0], axes[1], axes[2]) : csFactory.createCartesianCS(csName, axes[0], axes[1]));
}
default:
{
throw new FactoryException(Errors.getResources(defaultProperties).getString(Errors.Keys.UnknownEnumValue_2, type, PJ.Type.class));
}
}
}
use of org.apache.sis.referencing.operation.DefaultConversion in project sis by apache.
the class StandardDefinitions method createUniversal.
/**
* Creates a Universal Transverse Mercator (UTM) or a Universal Polar Stereographic (UPS) projected CRS
* using the Apache SIS factory implementation. This method restricts the factory to SIS implementation
* instead than arbitrary factory in order to meet the contract saying that {@link CommonCRS} methods
* should never fail.
*
* @param code the EPSG code, or 0 if none.
* @param baseCRS the geographic CRS on which the projected CRS is based.
* @param isUTM {@code true} for UTM or {@code false} for UPS. Note: redundant with the given latitude.
* @param latitude a latitude in the zone of the desired projection, to be snapped to 0°, 90°S or 90°N.
* @param longitude a longitude in the zone of the desired projection, to be snapped to UTM central meridian.
* @param derivedCS the projected coordinate system.
*/
static ProjectedCRS createUniversal(final int code, final GeographicCRS baseCRS, final boolean isUTM, final double latitude, final double longitude, final CartesianCS derivedCS) {
final OperationMethod method;
try {
method = DefaultFactories.forBuildin(MathTransformFactory.class, DefaultMathTransformFactory.class).getOperationMethod(isUTM ? TransverseMercator.NAME : PolarStereographicA.NAME);
} catch (NoSuchIdentifierException e) {
// Should not happen with SIS implementation.
throw new IllegalStateException(e);
}
final ParameterValueGroup parameters = method.getParameters().createValue();
String name = isUTM ? TransverseMercator.Zoner.UTM.setParameters(parameters, latitude, longitude) : PolarStereographicA.setParameters(parameters, latitude >= 0);
final DefaultConversion conversion = new DefaultConversion(properties(0, name, null, false), method, null, parameters);
name = baseCRS.getName().getCode() + " / " + name;
return new DefaultProjectedCRS(properties(code, name, null, false), baseCRS, conversion, derivedCS);
}
Aggregations