use of org.biojava.bio.structure.SSBond in project ffx by mjschnie.
the class PDBFileMatcher method fixFile.
private void fixFile(FileFilePair currentPair, PDBFileReader filereader) throws IOException {
File matchFile = currentPair.getMatchedFile();
Structure matchStructure = currentPair.getStructure();
if (matchStructure == null) {
matchStructure = filereader.getStructure(matchFile);
}
File sourceFile = currentPair.getSourceFile();
if (sourceFile == null) {
throw new IOException(String.format("No source file was matched to file %s", matchFile.toString()));
}
Structure sourceStructure = null;
if (fixAtoms) {
sourceStructure = filereader.getStructure(sourceFile);
Atom[] matchAtoms = StructureTools.getAllAtomArray(matchStructure);
for (Atom matchAtom : matchAtoms) {
Atom sourceAtom = getMatchingAtom(matchAtom, sourceStructure, robustMatch);
if (fixBFactors) {
matchAtom.setTempFactor(sourceAtom.getTempFactor());
}
}
// Other methods can go here.
}
if (fixSSBonds) {
if (sourceStructure == null) {
sourceStructure = filereader.getStructure(sourceFile);
}
List<SSBond> sourceBonds = sourceStructure.getSSBonds();
List<SSBond> matchBonds = matchStructure.getSSBonds();
for (SSBond sourceBond : sourceBonds) {
boolean isContained = false;
for (SSBond matchBond : matchBonds) {
if (compareSSBonds(matchBond, sourceBond)) {
isContained = true;
break;
}
}
if (!isContained) {
matchStructure.addSSBond(sourceBond.clone());
}
}
}
if (fixCryst) {
if (sourceStructure == null) {
sourceStructure = filereader.getStructure(sourceFile);
}
PDBCrystallographicInfo crystalInfo = sourceStructure.getCrystallographicInfo();
try {
PDBCrystallographicInfo duplicateInfo = cloneCrystalInfo(crystalInfo);
matchStructure.setCrystallographicInfo(duplicateInfo);
} catch (IllegalArgumentException ex) {
logger.warning(String.format(" No crystal information for source structure " + "%s: nothing attached to file %s", sourceFile.toString(), matchFile.toString()));
}
}
String pdb = matchStructure.toPDB();
if (headerLink) {
StringBuilder pdbBuilder = new StringBuilder(pdb);
int position = pdbBuilder.lastIndexOf("REMARK ");
int remarkNumber = 4;
if (position >= 0) {
String nextLine = pdbBuilder.substring(position, position + 1000);
int offset = nextLine.indexOf("%n");
if (offset < 0) {
nextLine = pdbBuilder.substring(position);
offset = nextLine.indexOf("%n");
}
position += offset;
String[] tok = nextLine.split(" +", 3);
try {
remarkNumber = Integer.parseInt(tok[1]) + 1;
} catch (NumberFormatException ex) {
// Silent.
}
}
String toInsert = String.format("REMARK%4d SOURCE FILE: %s", remarkNumber, sourceFile.getName());
toInsert = toInsert.concat(String.format("REMARK%4d RMSD:%11.6f ANGSTROMS", remarkNumber, currentPair.getRMSD()));
pdbBuilder.insert(position, toInsert);
pdb = pdbBuilder.toString();
}
File newFile = createVersionedCopy(matchFile);
try (BufferedWriter bw = new BufferedWriter(new FileWriter(newFile))) {
try {
bw.write(pdb);
} catch (IOException ex) {
logger.warning(String.format(" Error writing to file %s", newFile.getName()));
}
}
}
use of org.biojava.bio.structure.SSBond in project ffx by mjschnie.
the class BiojavaFilter method writeFile.
/**
* <p>
* writeFile</p>
*
* @param saveFile a {@link java.io.File} object.
* @param append a {@link java.lang.StringBuilder} object.
* @param printLinear Whether to print atoms linearly or by element
* @return Success of writing.
*/
public boolean writeFile(File saveFile, boolean append, boolean printLinear) {
if (saveFile == null) {
return false;
}
if (vdwH) {
logger.info(" Printing hydrogens to van der Waals centers instead of nuclear locations.");
}
/**
* Create StringBuilders for ATOM, ANISOU and TER records that can be
* reused.
*/
StringBuilder sb = new StringBuilder("ATOM ");
StringBuilder anisouSB = new StringBuilder("ANISOU");
StringBuilder terSB = new StringBuilder("TER ");
for (int i = 6; i < 80; i++) {
sb.append(' ');
anisouSB.append(' ');
terSB.append(' ');
}
FileWriter fw;
BufferedWriter bw;
try {
File newFile = saveFile;
if (!append) {
newFile = version(saveFile);
}
activeMolecularAssembly.setFile(newFile);
activeMolecularAssembly.setName(newFile.getName());
logger.log(Level.INFO, " Saving {0}", newFile.getName());
fw = new FileWriter(newFile, append);
bw = new BufferedWriter(fw);
// =============================================================================
// The CRYST1 record presents the unit cell parameters, space group, and Z
// value. If the structure was not determined by crystallographic means, CRYST1
// simply provides the unitary values, with an appropriate REMARK.
//
// 7 - 15 Real(9.3) a a (Angstroms).
// 16 - 24 Real(9.3) b b (Angstroms).
// 25 - 33 Real(9.3) c c (Angstroms).
// 34 - 40 Real(7.2) alpha alpha (degrees).
// 41 - 47 Real(7.2) beta beta (degrees).
// 48 - 54 Real(7.2) gamma gamma (degrees).
// 56 - 66 LString sGroup Space group.
// 67 - 70 Integer z Z value.
// =============================================================================
Crystal crystal = activeMolecularAssembly.getCrystal();
if (crystal != null && !crystal.aperiodic()) {
Crystal c = crystal.getUnitCell();
if (!listMode) {
bw.write(format("CRYST1%9.3f%9.3f%9.3f%7.2f%7.2f%7.2f %10s\n", c.a, c.b, c.c, c.alpha, c.beta, c.gamma, padRight(c.spaceGroup.pdbName, 10)));
} else {
listOutput.add(format("CRYST1%9.3f%9.3f%9.3f%7.2f%7.2f%7.2f %10s", c.a, c.b, c.c, c.alpha, c.beta, c.gamma, padRight(c.spaceGroup.pdbName, 10)));
}
}
// =============================================================================
// The SSBOND record identifies each disulfide bond in protein and polypeptide
// structures by identifying the two residues involved in the bond.
// The disulfide bond distance is included after the symmetry operations at
// the end of the SSBOND record.
//
// 8 - 10 Integer serNum Serial number.
// 12 - 14 LString(3) "CYS" Residue name.
// 16 Character chainID1 Chain identifier.
// 18 - 21 Integer seqNum1 Residue sequence number.
// 22 AChar icode1 Insertion code.
// 26 - 28 LString(3) "CYS" Residue name.
// 30 Character chainID2 Chain identifier.
// 32 - 35 Integer seqNum2 Residue sequence number.
// 36 AChar icode2 Insertion code.
// 60 - 65 SymOP sym1 Symmetry oper for 1st resid
// 67 - 72 SymOP sym2 Symmetry oper for 2nd resid
// 74 – 78 Real(5.2) Length Disulfide bond distance
//
// If SG of cysteine is disordered then there are possible alternate linkages.
// wwPDB practice is to put together all possible SSBOND records. This is
// problematic because the alternate location identifier is not specified in
// the SSBOND record.
// =============================================================================
int serNum = 1;
Polymer[] polymers = activeMolecularAssembly.getChains();
if (polymers != null) {
for (Polymer polymer : polymers) {
ArrayList<Residue> residues = polymer.getResidues();
for (Residue residue : residues) {
if (residue.getName().equalsIgnoreCase("CYS")) {
List<Atom> cysAtoms = residue.getAtomList();
Atom SG1 = null;
for (Atom atom : cysAtoms) {
if (atom.getName().equalsIgnoreCase("SG")) {
SG1 = atom;
break;
}
}
List<Bond> bonds = SG1.getBonds();
for (Bond bond : bonds) {
Atom SG2 = bond.get1_2(SG1);
if (SG2.getName().equalsIgnoreCase("SG")) {
if (SG1.getIndex() < SG2.getIndex()) {
bond.energy(false);
if (!listMode) {
bw.write(format("SSBOND %3d CYS %1s %4s CYS %1s %4s %36s %5.2f\n", serNum++, SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()), SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "", bond.getValue()));
} else {
listOutput.add(format("SSBOND %3d CYS %1s %4s CYS %1s %4s %36s %5.2f\n", serNum++, SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()), SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "", bond.getValue()));
}
}
}
}
}
}
}
}
// =============================================================================
//
// 7 - 11 Integer serial Atom serial number.
// 13 - 16 Atom name Atom name.
// 17 Character altLoc Alternate location indicator.
// 18 - 20 Residue name resName Residue name.
// 22 Character chainID Chain identifier.
// 23 - 26 Integer resSeq Residue sequence number.
// 27 AChar iCode Code for insertion of residues.
// 31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
// 39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
// 47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
// 55 - 60 Real(6.2) occupancy Occupancy.
// 61 - 66 Real(6.2) tempFactor Temperature factor.
// 77 - 78 LString(2) element Element symbol, right-justified.
// 79 - 80 LString(2) charge Charge on the atom.
// =============================================================================
// 1 2 3 4 5 6 7
// 123456789012345678901234567890123456789012345678901234567890123456789012345678
// ATOM 1 N ILE A 16 60.614 71.140 -10.592 1.00 7.38 N
// ATOM 2 CA ILE A 16 60.793 72.149 -9.511 1.00 6.91 C
MolecularAssembly[] molecularAssemblies = this.getMolecularAssemblys();
int serial = 1;
// Loop over biomolecular chains
if (polymers != null) {
for (Polymer polymer : polymers) {
currentSegID = polymer.getName();
currentChainID = polymer.getChainID();
sb.setCharAt(21, currentChainID);
// Loop over residues
ArrayList<Residue> residues = polymer.getResidues();
for (Residue residue : residues) {
String resName = residue.getName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
int resID = residue.getResidueNumber();
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
// Loop over atoms
ArrayList<Atom> residueAtoms = residue.getAtomList();
ArrayList<Atom> backboneAtoms = residue.getBackboneAtoms();
boolean altLocFound = false;
for (Atom atom : backboneAtoms) {
writeAtom(atom, serial++, sb, anisouSB, bw);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
residueAtoms.remove(atom);
}
for (Atom atom : residueAtoms) {
writeAtom(atom, serial++, sb, anisouSB, bw);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
Polymer altPolymer = altMolecularAssembly.getPolymer(currentChainID, currentSegID, false);
Residue altResidue = altPolymer.getResidue(resName, resID, false);
backboneAtoms = altResidue.getBackboneAtoms();
residueAtoms = altResidue.getAtomList();
for (Atom atom : backboneAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeAtom(atom, serial++, sb, anisouSB, bw);
}
residueAtoms.remove(atom);
}
for (Atom atom : residueAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeAtom(atom, serial++, sb, anisouSB, bw);
}
}
}
}
}
terSB.replace(6, 11, String.format("%5s", Hybrid36.encode(5, serial++)));
terSB.replace(12, 16, " ");
terSB.replace(16, 26, sb.substring(16, 26));
if (!listMode) {
bw.write(terSB.toString());
bw.newLine();
} else {
listOutput.add(terSB.toString());
}
}
}
sb.replace(0, 6, "HETATM");
sb.setCharAt(21, 'A');
int resID = 1;
Polymer polymer = activeMolecularAssembly.getPolymer('A', "A", false);
if (polymer != null) {
ArrayList<Residue> residues = polymer.getResidues();
for (Residue residue : residues) {
int resID2 = residue.getResidueNumber();
if (resID2 >= resID) {
resID = resID2 + 1;
}
}
}
/**
* Loop over molecules, ions and then water.
*/
ArrayList<Molecule> molecules = activeMolecularAssembly.getMolecules();
for (int i = 0; i < molecules.size(); i++) {
Molecule molecule = (Molecule) molecules.get(i);
Character chainID = molecule.getChainID();
sb.setCharAt(21, chainID);
String resName = molecule.getResidueName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
ArrayList<Atom> moleculeAtoms = molecule.getAtomList();
boolean altLocFound = false;
for (Atom atom : moleculeAtoms) {
writeAtom(atom, serial++, sb, anisouSB, bw);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
MSNode altmolecule = altMolecularAssembly.getMolecules().get(i);
moleculeAtoms = altmolecule.getAtomList();
for (Atom atom : moleculeAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeAtom(atom, serial++, sb, anisouSB, bw);
}
}
}
}
resID++;
}
ArrayList<MSNode> ions = activeMolecularAssembly.getIons();
for (int i = 0; i < ions.size(); i++) {
Molecule ion = (Molecule) ions.get(i);
Character chainID = ion.getChainID();
sb.setCharAt(21, chainID);
String resName = ion.getResidueName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
ArrayList<Atom> ionAtoms = ion.getAtomList();
boolean altLocFound = false;
for (Atom atom : ionAtoms) {
writeAtom(atom, serial++, sb, anisouSB, bw);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
MSNode altion = altMolecularAssembly.getIons().get(i);
ionAtoms = altion.getAtomList();
for (Atom atom : ionAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeAtom(atom, serial++, sb, anisouSB, bw);
}
}
}
}
resID++;
}
ArrayList<MSNode> waters = activeMolecularAssembly.getWaters();
for (int i = 0; i < waters.size(); i++) {
Molecule water = (Molecule) waters.get(i);
Character chainID = water.getChainID();
sb.setCharAt(21, chainID);
String resName = water.getResidueName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
ArrayList<Atom> waterAtoms = water.getAtomList();
boolean altLocFound = false;
for (Atom atom : waterAtoms) {
writeAtom(atom, serial++, sb, anisouSB, bw);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
MSNode altwater = altMolecularAssembly.getWaters().get(i);
waterAtoms = altwater.getAtomList();
for (Atom atom : waterAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeAtom(atom, serial++, sb, anisouSB, bw);
}
}
}
}
resID++;
}
if (!listMode) {
bw.write("END");
bw.newLine();
} else {
listOutput.add("END");
}
bw.close();
} catch (Exception e) {
String message = "Exception writing to file: " + saveFile.toString();
logger.log(Level.WARNING, message, e);
return false;
}
return true;
}
use of org.biojava.bio.structure.SSBond in project ffx by mjschnie.
the class BiojavaFilter method writeSIFTFile.
/*public Structure writeToStructure(String header) {
return writeToStructure(activeMolecularAssembly, header);
}
public static Structure writeToStructure(MolecularAssembly assembly, String header) {
Structure structure = new StructureImpl();
for (Polymer polymer : assembly.getChains()) {
Chain chain = new ChainImpl();
for (Residue residue : polymer.getResidues()) {
Group group;
switch (residue.getResidueType()) {
case AA:
group = new AminoAcidImpl();
break;
case NA:
group = new NucleotideImpl();
break;
default:
group = new HetatomImpl();
break;
}
for (Atom atom : residue.getAtomList()) {
org.biojava.bio.structure.Atom bjAtom = new AtomImpl();
group.addAtom(bjAtom);
}
chain.addGroup(group);
}
structure.addChain(chain);
}
for (Molecule molecule : assembly.getMolecules()) {
for (Atom atom : molecule.getAtomList()) {
}
}
}*/
public boolean writeSIFTFile(File saveFile, boolean append, String[] resAndScore) {
if (saveFile == null) {
return false;
}
if (vdwH) {
logger.info(" Printing hydrogens to van der Waals centers instead of nuclear locations.");
}
/**
* Create StringBuilders for ATOM, ANISOU and TER records that can be
* reused.
*/
StringBuilder sb = new StringBuilder("ATOM ");
StringBuilder anisouSB = new StringBuilder("ANISOU");
StringBuilder terSB = new StringBuilder("TER ");
for (int i = 6; i < 80; i++) {
sb.append(' ');
anisouSB.append(' ');
terSB.append(' ');
}
FileWriter fw;
BufferedWriter bw;
try {
File newFile = saveFile;
if (!append) {
newFile = version(saveFile);
}
activeMolecularAssembly.setFile(newFile);
activeMolecularAssembly.setName(newFile.getName());
logger.log(Level.INFO, " Saving {0}", newFile.getName());
fw = new FileWriter(newFile, append);
bw = new BufferedWriter(fw);
// =============================================================================
// The CRYST1 record presents the unit cell parameters, space group, and Z
// value. If the structure was not determined by crystallographic means, CRYST1
// simply provides the unitary values, with an appropriate REMARK.
//
// 7 - 15 Real(9.3) a a (Angstroms).
// 16 - 24 Real(9.3) b b (Angstroms).
// 25 - 33 Real(9.3) c c (Angstroms).
// 34 - 40 Real(7.2) alpha alpha (degrees).
// 41 - 47 Real(7.2) beta beta (degrees).
// 48 - 54 Real(7.2) gamma gamma (degrees).
// 56 - 66 LString sGroup Space group.
// 67 - 70 Integer z Z value.
// =============================================================================
Crystal crystal = activeMolecularAssembly.getCrystal();
if (crystal != null && !crystal.aperiodic()) {
Crystal c = crystal.getUnitCell();
if (!listMode) {
bw.write(format("CRYST1%9.3f%9.3f%9.3f%7.2f%7.2f%7.2f %10s\n", c.a, c.b, c.c, c.alpha, c.beta, c.gamma, padRight(c.spaceGroup.pdbName, 10)));
} else {
listOutput.add(format("CRYST1%9.3f%9.3f%9.3f%7.2f%7.2f%7.2f %10s", c.a, c.b, c.c, c.alpha, c.beta, c.gamma, padRight(c.spaceGroup.pdbName, 10)));
}
}
// =============================================================================
// The SSBOND record identifies each disulfide bond in protein and polypeptide
// structures by identifying the two residues involved in the bond.
// The disulfide bond distance is included after the symmetry operations at
// the end of the SSBOND record.
//
// 8 - 10 Integer serNum Serial number.
// 12 - 14 LString(3) "CYS" Residue name.
// 16 Character chainID1 Chain identifier.
// 18 - 21 Integer seqNum1 Residue sequence number.
// 22 AChar icode1 Insertion code.
// 26 - 28 LString(3) "CYS" Residue name.
// 30 Character chainID2 Chain identifier.
// 32 - 35 Integer seqNum2 Residue sequence number.
// 36 AChar icode2 Insertion code.
// 60 - 65 SymOP sym1 Symmetry oper for 1st resid
// 67 - 72 SymOP sym2 Symmetry oper for 2nd resid
// 74 – 78 Real(5.2) Length Disulfide bond distance
//
// If SG of cysteine is disordered then there are possible alternate linkages.
// wwPDB practice is to put together all possible SSBOND records. This is
// problematic because the alternate location identifier is not specified in
// the SSBOND record.
// =============================================================================
int serNum = 1;
Polymer[] polymers = activeMolecularAssembly.getChains();
if (polymers != null) {
for (Polymer polymer : polymers) {
ArrayList<Residue> residues = polymer.getResidues();
for (Residue residue : residues) {
if (residue.getName().equalsIgnoreCase("CYS")) {
List<Atom> cysAtoms = residue.getAtomList();
Atom SG1 = null;
for (Atom atom : cysAtoms) {
if (atom.getName().equalsIgnoreCase("SG")) {
SG1 = atom;
break;
}
}
List<Bond> bonds = SG1.getBonds();
for (Bond bond : bonds) {
Atom SG2 = bond.get1_2(SG1);
if (SG2.getName().equalsIgnoreCase("SG")) {
if (SG1.getIndex() < SG2.getIndex()) {
bond.energy(false);
if (!listMode) {
bw.write(format("SSBOND %3d CYS %1s %4s CYS %1s %4s %36s %5.2f\n", serNum++, SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()), SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "", bond.getValue()));
} else {
listOutput.add(format("SSBOND %3d CYS %1s %4s CYS %1s %4s %36s %5.2f\n", serNum++, SG1.getChainID().toString(), Hybrid36.encode(4, SG1.getResidueNumber()), SG2.getChainID().toString(), Hybrid36.encode(4, SG2.getResidueNumber()), "", bond.getValue()));
}
}
}
}
}
}
}
}
// =============================================================================
//
// 7 - 11 Integer serial Atom serial number.
// 13 - 16 Atom name Atom name.
// 17 Character altLoc Alternate location indicator.
// 18 - 20 Residue name resName Residue name.
// 22 Character chainID Chain identifier.
// 23 - 26 Integer resSeq Residue sequence number.
// 27 AChar iCode Code for insertion of residues.
// 31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
// 39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
// 47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
// 55 - 60 Real(6.2) occupancy Occupancy.
// 61 - 66 Real(6.2) tempFactor Temperature factor.
// 77 - 78 LString(2) element Element symbol, right-justified.
// 79 - 80 LString(2) charge Charge on the atom.
// =============================================================================
// 1 2 3 4 5 6 7
// 123456789012345678901234567890123456789012345678901234567890123456789012345678
// ATOM 1 N ILE A 16 60.614 71.140 -10.592 1.00 7.38 N
// ATOM 2 CA ILE A 16 60.793 72.149 -9.511 1.00 6.91 C
MolecularAssembly[] molecularAssemblies = this.getMolecularAssemblys();
int serial = 1;
// Loop over biomolecular chains
if (polymers != null) {
for (Polymer polymer : polymers) {
currentSegID = polymer.getName();
currentChainID = polymer.getChainID();
sb.setCharAt(21, currentChainID);
// Loop over residues
ArrayList<Residue> residues = polymer.getResidues();
for (Residue residue : residues) {
String resName = residue.getName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
int resID = residue.getResidueNumber();
int i = 0;
String[] entries = null;
for (; i < resAndScore.length; i++) {
entries = resAndScore[i].split("\\t");
if (!entries[0].equals(entries[0].replaceAll("\\D+", ""))) {
String[] subEntries = entries[0].split("[^0-9]");
entries[0] = subEntries[0];
}
if (entries[0].equals(String.valueOf(resID)) && !".".equals(entries[1])) {
break;
}
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
// Loop over atoms
ArrayList<Atom> residueAtoms = residue.getAtomList();
boolean altLocFound = false;
for (Atom atom : residueAtoms) {
if (i != resAndScore.length) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, entries[1]);
} else {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
}
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
Polymer altPolymer = altMolecularAssembly.getPolymer(currentChainID, currentSegID, false);
Residue altResidue = altPolymer.getResidue(resName, resID, false);
residueAtoms = altResidue.getAtomList();
for (Atom atom : residueAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
if (i != resAndScore.length) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, entries[1]);
} else {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
}
}
}
}
}
}
terSB.replace(6, 11, String.format("%5s", Hybrid36.encode(5, serial++)));
terSB.replace(12, 16, " ");
terSB.replace(16, 26, sb.substring(16, 26));
if (!listMode) {
bw.write(terSB.toString());
bw.newLine();
} else {
listOutput.add(terSB.toString());
}
}
}
sb.replace(0, 6, "HETATM");
sb.setCharAt(21, 'A');
int resID = 1;
Polymer polymer = activeMolecularAssembly.getPolymer('A', "A", false);
if (polymer != null) {
ArrayList<Residue> residues = polymer.getResidues();
for (Residue residue : residues) {
int resID2 = residue.getResidueNumber();
if (resID2 >= resID) {
resID = resID2 + 1;
}
}
}
/**
* Loop over molecules, ions and then water.
*/
ArrayList<Molecule> molecules = activeMolecularAssembly.getMolecules();
for (int i = 0; i < molecules.size(); i++) {
Molecule molecule = (Molecule) molecules.get(i);
Character chainID = molecule.getChainID();
sb.setCharAt(21, chainID);
String resName = molecule.getResidueName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
ArrayList<Atom> moleculeAtoms = molecule.getAtomList();
boolean altLocFound = false;
for (Atom atom : moleculeAtoms) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
MSNode altmolecule = altMolecularAssembly.getMolecules().get(i);
moleculeAtoms = altmolecule.getAtomList();
for (Atom atom : moleculeAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
}
}
}
}
resID++;
}
ArrayList<MSNode> ions = activeMolecularAssembly.getIons();
for (int i = 0; i < ions.size(); i++) {
Molecule ion = (Molecule) ions.get(i);
Character chainID = ion.getChainID();
sb.setCharAt(21, chainID);
String resName = ion.getResidueName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
ArrayList<Atom> ionAtoms = ion.getAtomList();
boolean altLocFound = false;
for (Atom atom : ionAtoms) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
MSNode altion = altMolecularAssembly.getIons().get(i);
ionAtoms = altion.getAtomList();
for (Atom atom : ionAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
}
}
}
}
resID++;
}
ArrayList<MSNode> waters = activeMolecularAssembly.getWaters();
for (int i = 0; i < waters.size(); i++) {
Molecule water = (Molecule) waters.get(i);
Character chainID = water.getChainID();
sb.setCharAt(21, chainID);
String resName = water.getResidueName();
if (resName.length() > 3) {
resName = resName.substring(0, 3);
}
sb.replace(17, 20, padLeft(resName.toUpperCase(), 3));
sb.replace(22, 26, String.format("%4s", Hybrid36.encode(4, resID)));
ArrayList<Atom> waterAtoms = water.getAtomList();
boolean altLocFound = false;
for (Atom atom : waterAtoms) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
Character altLoc = atom.getAltLoc();
if (altLoc != null && !altLoc.equals(' ')) {
altLocFound = true;
}
}
// Write out alternate conformers
if (altLocFound) {
for (int ma = 1; ma < molecularAssemblies.length; ma++) {
MolecularAssembly altMolecularAssembly = molecularAssemblies[ma];
MSNode altwater = altMolecularAssembly.getWaters().get(i);
waterAtoms = altwater.getAtomList();
for (Atom atom : waterAtoms) {
if (atom.getAltLoc() != null && !atom.getAltLoc().equals(' ') && !atom.getAltLoc().equals('A')) {
writeSIFTAtom(atom, serial++, sb, anisouSB, bw, null);
}
}
}
}
resID++;
}
if (!listMode) {
bw.write("END");
bw.newLine();
} else {
listOutput.add("END");
}
bw.close();
} catch (Exception e) {
String message = "Exception writing to file: " + saveFile.toString();
logger.log(Level.WARNING, message, e);
return false;
}
return true;
}
use of org.biojava.bio.structure.SSBond in project ffx by mjschnie.
the class BiojavaFilter method convert.
/**
* {@inheritDoc}
*
* Parse the Biojava Structure
*
* @return true if the structure is successfully converted
*/
@Override
public boolean convert() {
// First atom is #1, to match xyz file format
int xyzIndex = 1;
setConverted(false);
systems.add(activeMolecularAssembly);
if (mutate) {
List<Character> chainIDs = new ArrayList<>();
for (Chain chain : structure.getChains()) {
chainIDs.add(chain.getChainID().charAt(0));
}
if (!chainIDs.contains(mutateChainID)) {
if (chainIDs.size() == 1) {
logger.warning(String.format(" Chain ID %c for " + "mutation not found: only one chain %c " + "found.", mutateChainID, chainIDs.get(0)));
mutateChainID = chainIDs.get(0);
} else {
logger.warning(String.format(" Chain ID %c for " + "mutation not found: mutation will not " + "proceed.", mutateChainID));
}
}
}
/**
* Echo the alternate location being parsed.
*/
if (currentAltLoc == 'A') {
logger.info(String.format(" Reading %s", structure.getName()));
} else {
logger.info(String.format(" Reading %s alternate location %s", structure.getName(), currentAltLoc));
}
org.biojava.bio.structure.Atom[] bjAtoms = StructureTools.getAllAtomArray(structure);
int nAtoms = bjAtoms.length;
Atom[] ffxAtoms = new Atom[nAtoms];
/**
* Reset the current chain and segID.
*/
currentChainID = null;
currentSegID = null;
PDBCrystallographicInfo cInfo = structure.getCrystallographicInfo();
if (cInfo.isCrystallographic()) {
// I do not think we need to check if it already has these properties,
// but it can be done.
properties.addProperty("a-axis", cInfo.getA());
properties.addProperty("b-axis", cInfo.getB());
properties.addProperty("c-axis", cInfo.getC());
properties.addProperty("alpha", cInfo.getAlpha());
properties.addProperty("beta", cInfo.getBeta());
properties.addProperty("gamma", cInfo.getGamma());
properties.addProperty("spacegroup", SpaceGroup.pdb2ShortName(cInfo.getSpaceGroup()));
}
for (org.biojava.bio.structure.Atom atom : bjAtoms) {
String name = atom.getName().toUpperCase().trim();
double[] xyz = new double[3];
xyz[0] = atom.getX();
xyz[1] = atom.getY();
xyz[2] = atom.getZ();
char altLoc = atom.getAltLoc();
if (!altLocs.contains(altLoc)) {
altLocs.add(altLoc);
}
if (altLoc != ' ' && altLoc != 'A' && altLoc != currentAltLoc) {
break;
}
if (name.contains("1H") || name.toUpperCase().contains("2H") || name.toUpperCase().contains("3H")) {
// VERSION3_2 is presently just a placeholder for "anything non-standard".
fileStandard = VERSION3_2;
}
Group group = atom.getGroup();
ResidueNumber resnum = group.getResidueNumber();
int resSeq = resnum.getSeqNum();
String resName = group.getPDBName().trim().toUpperCase();
Chain chain = group.getChain();
char chainID = chain.getChainID().charAt(0);
String segID = getSegID(chainID);
boolean printAtom = false;
if (mutate && chainID == mutateChainID && mutateResID == resSeq) {
if (name.equals("N") || name.equals("C") || name.equals("O") || name.equals("CA")) {
printAtom = true;
name = mutateToResname;
} else {
logger.info(String.format(" Deleting atom %s of %s %d", name, resName, resSeq));
break;
}
}
Atom newAtom = new Atom(0, name, altLoc, xyz, resName, resSeq, chainID, atom.getOccupancy(), atom.getTempFactor(), segID);
/* Biojava sets at least some capping groups, and possibly nonstandard
amino acids to be heteroatoms. */
boolean hetatm = true;
for (AminoAcid3 aa3Name : AminoAcid3.values()) {
if (aa3Name.name().equals(resName)) {
hetatm = false;
break;
}
}
newAtom.setHetero(hetatm);
// Look Ma, Biojava doesn't care about anisou!
Atom returnedAtom = (Atom) activeMolecularAssembly.addMSNode(newAtom);
if (returnedAtom != newAtom) {
atoms.put(atom.getPDBserial(), returnedAtom);
if (logger.isLoggable(Level.FINE)) {
logger.fine(String.format("%s has been retained over\n%s", returnedAtom.toString(), newAtom.toString()));
}
} else {
atoms.put(atom.getPDBserial(), newAtom);
if (newAtom.getIndex() == 0) {
newAtom.setXyzIndex(xyzIndex++);
}
if (printAtom) {
logger.info(newAtom.toString());
}
}
}
List<Bond> ssBondList = new ArrayList<>();
for (SSBond ssBond : structure.getSSBonds()) {
Polymer c1 = activeMolecularAssembly.getChain(ssBond.getChainID1());
Polymer c2 = activeMolecularAssembly.getChain(ssBond.getChainID2());
int rn1;
int rn2;
try {
rn1 = Integer.parseInt(ssBond.getResnum1());
rn2 = Integer.parseInt(ssBond.getResnum1());
} catch (NumberFormatException ex) {
logger.warning(String.format(" Could not parse SSbond %d", ssBond.getSerNum()));
continue;
}
Residue r1 = c1.getResidue(rn1);
Residue r2 = c2.getResidue(rn2);
List<Atom> atoms1 = r1.getAtomList();
List<Atom> atoms2 = r2.getAtomList();
Atom SG1 = null;
Atom SG2 = null;
for (Atom atom : atoms1) {
if (atom.getName().equalsIgnoreCase("SG")) {
SG1 = atom;
break;
}
}
for (Atom atom : atoms2) {
if (atom.getName().equalsIgnoreCase("SG")) {
SG2 = atom;
break;
}
}
if (SG1 == null) {
logger.warning(String.format(" SG atom 1 of SS-bond %s is null", ssBond.toString()));
}
if (SG2 == null) {
logger.warning(String.format(" SG atom 2 of SS-bond %s is null", ssBond.toString()));
}
if (SG1 == null || SG2 == null) {
continue;
}
double d = VectorMath.dist(SG1.getXYZ(null), SG2.getXYZ(null));
if (d < 3.0) {
r1.setName("CYX");
r2.setName("CYX");
for (Atom atom : atoms1) {
atom.setResName("CYX");
}
for (Atom atom : atoms2) {
atom.setResName("CYX");
}
Bond bond = new Bond(SG1, SG2);
ssBondList.add(bond);
} else {
String message = String.format("Ignoring [%s]\n due to distance %8.3f A.", ssBond.toString(), d);
logger.log(Level.WARNING, message);
}
}
int pdbAtoms = activeMolecularAssembly.getAtomArray().length;
assignAtomTypes();
StringBuilder sb = new StringBuilder(" Disulfide Bonds:");
for (Bond bond : ssBondList) {
Atom a1 = bond.getAtom(0);
Atom a2 = bond.getAtom(1);
int[] c = new int[2];
c[0] = a1.getAtomType().atomClass;
c[1] = a2.getAtomType().atomClass;
String key = ffx.potential.parameters.BondType.sortKey(c);
ffx.potential.parameters.BondType bondType = forceField.getBondType(key);
if (bondType == null) {
logger.severe(String.format("No BondType for key: %s\n %s\n %s", key, a1, a2));
} else {
bond.setBondType(bondType);
}
double d = VectorMath.dist(a1.getXYZ(null), a2.getXYZ(null));
Polymer c1 = activeMolecularAssembly.getChain(a1.getSegID());
Polymer c2 = activeMolecularAssembly.getChain(a2.getSegID());
Residue r1 = c1.getResidue(a1.getResidueNumber());
Residue r2 = c2.getResidue(a2.getResidueNumber());
sb.append(String.format("\n S-S distance of %6.2f for %s and %s.", d, r1.toString(), r2.toString()));
bondList.add(bond);
}
if (ssBondList.size() > 0) {
logger.info(sb.toString());
}
/**
* Finally, re-number the atoms if missing atoms were created.
*/
if (pdbAtoms != activeMolecularAssembly.getAtomArray().length) {
numberAtoms();
}
return true;
}
Aggregations