use of org.bytedeco.javacpp.indexer.DoubleIndexer in project javacpp by bytedeco.
the class IndexerTest method testDoubleIndexer.
@Test
public void testDoubleIndexer() {
System.out.println("DoubleIndexer");
long size = 7 * 5 * 3 * 2;
long[] sizes = { 7, 5, 3, 2 };
long[] strides = { 5 * 3 * 2, 3 * 2, 2, 1 };
final DoublePointer ptr = new DoublePointer(size);
for (int i = 0; i < size; i++) {
ptr.position(i).put((double) i);
}
DoubleIndexer arrayIndexer = DoubleIndexer.create(ptr.position(0), sizes, strides, false);
DoubleIndexer directIndexer = DoubleIndexer.create(ptr.position(0), sizes, strides, true);
int n = 0;
for (int i = 0; i < sizes[0]; i++) {
assertEquals(n, arrayIndexer.get(i), 0);
assertEquals(n, directIndexer.get(i), 0);
for (int j = 0; j < sizes[1]; j++) {
assertEquals(n, arrayIndexer.get(i, j), 0);
assertEquals(n, directIndexer.get(i, j), 0);
for (int k = 0; k < sizes[2]; k++) {
assertEquals(n, arrayIndexer.get(i, j, k), 0);
assertEquals(n, directIndexer.get(i, j, k), 0);
for (int m = 0; m < sizes[3]; m++) {
long[] index = { i, j, k, m };
assertEquals(n, arrayIndexer.get(index), 0);
assertEquals(n, directIndexer.get(index), 0);
arrayIndexer.put(index, (double) (2 * n));
directIndexer.put(index, (double) (3 * n));
n++;
}
}
}
}
try {
arrayIndexer.get(size);
fail("IndexOutOfBoundsException should have been thrown.");
} catch (IndexOutOfBoundsException e) {
}
try {
directIndexer.get(size);
fail("IndexOutOfBoundsException should have been thrown.");
} catch (IndexOutOfBoundsException e) {
}
System.out.println("arrayIndexer" + arrayIndexer);
System.out.println("directIndexer" + directIndexer);
for (int i = 0; i < size; i++) {
assertEquals(3 * i, ptr.position(i).get(), 0);
}
arrayIndexer.release();
for (int i = 0; i < size; i++) {
assertEquals(2 * i, ptr.position(i).get(), 0);
}
System.gc();
if (Loader.sizeof(Pointer.class) > 4)
try {
long longSize = 0x80000000L + 8192;
final DoublePointer longPointer = new DoublePointer(longSize);
assertEquals(longSize, longPointer.capacity());
DoubleIndexer longIndexer = DoubleIndexer.create(longPointer);
assertEquals(longIndexer.pointer(), longPointer);
for (long i = 0; i < 8192; i++) {
longPointer.put(longSize - i - 1, i);
}
for (long i = 0; i < 8192; i++) {
assertEquals((long) longIndexer.get(longSize - i - 1), i);
}
System.out.println("longIndexer[0x" + Long.toHexString(longSize - 8192) + "] = " + longIndexer.get(longSize - 8192));
} catch (OutOfMemoryError e) {
System.out.println(e);
}
System.out.println();
}
use of org.bytedeco.javacpp.indexer.DoubleIndexer in project javacv by bytedeco.
the class PrincipalComponentAnalysis method principalComponentAnalysis.
// contour is a one dimensional array
private void principalComponentAnalysis(Mat contour, int entry, Mat matrix) throws Exception {
PCA pca_analysis = null;
Mat mean = null;
Mat eigenVector = null;
Mat eigenValues = null;
// Construct a buffer used by the pca analysis
try (Mat data_pts = new Mat(contour.rows(), 2, CV_64FC1);
Mat placeholder = new Mat();
Point cntr = new Point()) {
IntIndexer contourIndexer = contour.createIndexer();
DoubleIndexer data_idx = data_pts.createIndexer();
for (int i = 0; i < contour.rows(); i++) {
data_idx.put(i, 0, contourIndexer.get(i, 0));
data_idx.put(i, 1, contourIndexer.get(i, 1));
}
contourIndexer.release();
data_idx.release();
// Perform PrincipalComponentAnalysis analysis
ArrayList<Point2d> eigen_vecs = new ArrayList(2);
ArrayList<Double> eigen_val = new ArrayList(2);
pca_analysis = new PCA(data_pts, placeholder, CV_PCA_DATA_AS_ROW);
mean = pca_analysis.mean();
eigenVector = pca_analysis.eigenvectors();
eigenValues = pca_analysis.eigenvalues();
DoubleIndexer mean_idx = mean.createIndexer();
DoubleIndexer eigenVectorIndexer = eigenVector.createIndexer();
DoubleIndexer eigenValuesIndexer = eigenValues.createIndexer();
for (int i = 0; i < 2; ++i) {
eigen_vecs.add(new Point2d(eigenVectorIndexer.get(i, 0), eigenVectorIndexer.get(i, 1)));
eigen_val.add(eigenValuesIndexer.get(0, i));
}
double cntrX = mean_idx.get(0, 0);
double cntrY = mean_idx.get(0, 1);
mean_idx.release();
eigenVectorIndexer.release();
eigenValuesIndexer.release();
double x1 = cntrX + 0.02 * (eigen_vecs.get(0).x() * eigen_val.get(0));
double y1 = cntrY + 0.02 * (eigen_vecs.get(0).y() * eigen_val.get(0));
double x2 = cntrX - 0.02 * (eigen_vecs.get(1).x() * eigen_val.get(1));
double y2 = cntrY - 0.02 * (eigen_vecs.get(1).y() * eigen_val.get(1));
// Draw the principal components, keep accuracy during calculations
cntr.x((int) Math.rint(cntrX));
cntr.y((int) Math.rint(cntrY));
circle(matrix, cntr, 5, new Scalar(255, 0, 255, 0));
double radian1 = Math.atan2(cntrY - y1, cntrX - x1);
double radian2 = Math.atan2(cntrY - y2, cntrX - x2);
double hypotenuse1 = Math.sqrt((cntrY - y1) * (cntrY - y1) + (cntrX - x1) * (cntrX - x1));
double hypotenuse2 = Math.sqrt((cntrY - y2) * (cntrY - y2) + (cntrX - x2) * (cntrX - x2));
// Enhance the vector signal by a factor of 2
double point1x = cntrX - 2 * hypotenuse1 * Math.cos(radian1);
double point1y = cntrY - 2 * hypotenuse1 * Math.sin(radian1);
double point2x = cntrX - 2 * hypotenuse2 * Math.cos(radian2);
double point2y = cntrY - 2 * hypotenuse2 * Math.sin(radian2);
drawAxis(matrix, radian1, cntr, point1x, point1y, Scalar.BLUE);
drawAxis(matrix, radian2, cntr, point2x, point2y, Scalar.CYAN);
} finally {
if (pca_analysis != null) {
pca_analysis.deallocate();
}
if (mean != null) {
mean.deallocate();
}
if (eigenVector != null) {
eigenVector.deallocate();
}
if (eigenValues != null) {
eigenValues.deallocate();
}
}
}
Aggregations