use of org.concord.energy3d.model.Foundation in project energy3d by concord-consortium.
the class HeliostatDailyAnalysis method toJson.
@Override
public String toJson() {
String s = "{";
final HousePart selectedPart = SceneManager.getInstance().getSelectedPart();
if (selectedPart != null) {
if (selectedPart instanceof Mirror) {
s += "\"Heliostat\": \"" + selectedPart.toString().substring(0, selectedPart.toString().indexOf(')') + 1) + "\"";
} else if (selectedPart instanceof Foundation) {
s += "\"Foundation\": \"" + selectedPart.toString().substring(0, selectedPart.toString().indexOf(')') + 1) + "\"";
} else if (selectedPart.getTopContainer() instanceof Foundation) {
s += "\"Foundation\": \"" + selectedPart.getTopContainer().toString().substring(0, selectedPart.getTopContainer().toString().indexOf(')') + 1) + "\"";
}
} else {
s += "\"Heliostat\": \"All\"";
}
final String name = "Solar";
final List<Double> data = graph.getData(name);
s += ", \"" + name + "\": {";
s += "\"Hourly\": [";
for (final Double x : data) {
s += Graph.FIVE_DECIMALS.format(x) + ",";
}
s = s.substring(0, s.length() - 1);
s += "]\n";
s += ", \"Total\": " + Graph.ENERGY_FORMAT.format(getResult(name));
s += "}";
s += "}";
return s;
}
use of org.concord.energy3d.model.Foundation in project energy3d by concord-consortium.
the class BuildingCost method getCostByFoundation.
@Override
public double getCostByFoundation(final Foundation foundation) {
if (foundation == null || foundation.getProjectType() != Foundation.TYPE_BUILDING) {
return 0;
}
double sum = 0;
int buildingCount = 0;
for (final HousePart p : Scene.getInstance().getParts()) {
if (p instanceof Foundation) {
buildingCount++;
}
}
if (buildingCount == 1) {
for (final HousePart p : Scene.getInstance().getParts()) {
// if there is only one building, trees are included in its cost
if (!p.getLockEdit() && !(p instanceof Human)) {
sum += getPartCost(p);
}
}
} else {
sum = getPartCost(foundation);
for (final HousePart p : Scene.getInstance().getParts()) {
if (p.getTopContainer() == foundation) {
sum += getPartCost(p);
}
}
}
return sum;
}
use of org.concord.energy3d.model.Foundation in project energy3d by concord-consortium.
the class BuildingCost method getPartCost.
/* The material and installation costs are partly based on http://www.homewyse.com, but should be considered as largely fictitious. */
public static double getPartCost(final HousePart part) {
// The baseline cost for a wall is set to be $300/m^2, close to homewyse's estimates of masonry walls, interior framing, etc.
if (part instanceof Wall) {
final double uFactor = ((Wall) part).getUValue();
final double unitPrice = 300.0 + 8.0 / uFactor;
return part.getArea() * unitPrice;
}
// A storm window of about 1 m^2 costs about $500. A double-pane window of about 1 m^2 costs about $700.
if (part instanceof Window) {
final double uFactor = ((Window) part).getUValue();
final double unitPrice = 500.0 + 800.0 / uFactor;
return part.getArea() * unitPrice;
}
// The baseline (that is, the structure without insulation) cost for a roof is set to be $100/m^2.
if (part instanceof Roof) {
final double uFactor = ((Roof) part).getUValue();
final double unitPrice = 100.0 + 10.0 / uFactor;
return part.getArea() * unitPrice;
}
// The foundation cost is set to be $200/m^2.
if (part instanceof Foundation) {
final Foundation foundation = (Foundation) part;
final Building b = new Building(foundation);
if (b.isWallComplete()) {
b.calculate();
final double uFactor = foundation.getUValue();
final double unitPrice = 300.0 + 8.0 / uFactor;
return b.getArea() * unitPrice;
}
// the building is incomplete yet, so we can assume the floor insulation isn't there yet
return -1;
}
if (part instanceof Floor) {
final double area = part.getArea();
if (area > 0) {
return part.getArea() * 100.0;
}
return -1;
}
// According to http://www.homewyse.com/costs/cost_of_exterior_doors.html
if (part instanceof Door) {
final double uFactor = ((Door) part).getUValue();
final double unitPrice = 500.0 + 100.0 / uFactor;
return part.getArea() * unitPrice;
}
if (part instanceof SolarPanel) {
return Scene.getInstance().getPvCustomPrice().getTotalCost((SolarPanel) part);
}
if (part instanceof Rack) {
return Scene.getInstance().getPvCustomPrice().getTotalCost((Rack) part);
}
if (part instanceof Tree) {
switch(((Tree) part).getTreeType()) {
case Tree.LINDEN:
return 3000;
case Tree.COTTONWOOD:
return 2500;
case Tree.ELM:
return 2000;
case Tree.OAK:
return 2000;
case Tree.PINE:
return 1500;
case Tree.MAPLE:
return 1000;
default:
return 500;
}
}
return 0;
}
use of org.concord.energy3d.model.Foundation in project energy3d by concord-consortium.
the class SolarRadiation method computeOnMirror.
// unlike PV solar panels, no indirect (ambient or diffuse) radiation should be included in reflection calculation
private void computeOnMirror(final int minute, final ReadOnlyVector3 directionTowardSun, final Mirror mirror) {
final int nx = Scene.getInstance().getMirrorNx();
final int ny = Scene.getInstance().getMirrorNy();
final Foundation target = mirror.getReceiver();
if (target != null) {
final Calendar calendar = Heliodon.getInstance().getCalendar();
calendar.set(Calendar.HOUR_OF_DAY, (int) ((double) minute / (double) SolarRadiation.MINUTES_OF_DAY * 24.0));
calendar.set(Calendar.MINUTE, minute % 60);
mirror.draw();
}
// nx*ny*60: nx*ny is to get the unit cell area of the nx*ny grid; 60 is to convert the unit of timeStep from minute to kWh
final double a = mirror.getMirrorWidth() * mirror.getMirrorHeight() * Scene.getInstance().getTimeStep() / (nx * ny * 60.0);
final ReadOnlyVector3 normal = mirror.getNormal();
if (normal == null) {
throw new RuntimeException("Normal is null");
}
final Mesh mesh = mirror.getRadiationMesh();
MeshDataStore data = onMesh.get(mesh);
if (data == null) {
data = initMeshTextureDataOnRectangle(mesh, nx, ny);
}
final ReadOnlyVector3 offset = directionTowardSun.multiply(1, null);
final double dot = normal.dot(directionTowardSun);
double directRadiation = 0;
if (dot > 0) {
directRadiation += calculateDirectRadiation(directionTowardSun, normal);
}
final FloatBuffer vertexBuffer = mesh.getMeshData().getVertexBuffer();
// (0, 0)
final Vector3 p0 = new Vector3(vertexBuffer.get(3), vertexBuffer.get(4), vertexBuffer.get(5));
// (1, 0)
final Vector3 p1 = new Vector3(vertexBuffer.get(6), vertexBuffer.get(7), vertexBuffer.get(8));
// (0, 1)
final Vector3 p2 = new Vector3(vertexBuffer.get(0), vertexBuffer.get(1), vertexBuffer.get(2));
// final Vector3 q0 = drawMesh.localToWorld(p0, null);
// final Vector3 q1 = drawMesh.localToWorld(p1, null);
// final Vector3 q2 = drawMesh.localToWorld(p2, null);
// System.out.println("***" + q0.distance(q1) * Scene.getInstance().getAnnotationScale() + "," + q0.distance(q2) * Scene.getInstance().getAnnotationScale());
// this is the longer side (supposed to be y)
final Vector3 u = p1.subtract(p0, null).normalizeLocal();
// this is the shorter side (supposed to be x)
final Vector3 v = p2.subtract(p0, null).normalizeLocal();
// x and y must be swapped to have correct heat map texture, because nx represents rows and ny columns as we call initMeshTextureDataOnRectangle(mesh, nx, ny)
final double xSpacing = p1.distance(p0) / nx;
final double ySpacing = p2.distance(p0) / ny;
final Vector3 receiver = target != null ? target.getSolarReceiverCenter() : null;
List<Mesh> towerCollisionMeshes = null;
if (target != null) {
towerCollisionMeshes = new ArrayList<Mesh>();
for (final HousePart child : target.getChildren()) {
towerCollisionMeshes.add((Mesh) child.getRadiationCollisionSpatial());
}
final List<Roof> roofs = target.getRoofs();
if (!roofs.isEmpty()) {
for (final Roof r : roofs) {
for (final Spatial roofPart : r.getRoofPartsRoot().getChildren()) {
towerCollisionMeshes.add((Mesh) ((Node) roofPart).getChild(6));
}
}
}
}
final int iMinute = minute / Scene.getInstance().getTimeStep();
final boolean reflectionMapOnly = Scene.getInstance().getOnlyReflectedEnergyInMirrorSolarMap();
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
final ReadOnlyVector3 p = mesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
if (dot > 0) {
final PickResults pickResults = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != mesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
// for heat map generation
if (!reflectionMapOnly) {
data.dailySolarIntensity[x][y] += directRadiation;
}
if (receiver != null) {
// for concentrated energy calculation
final Vector3 toReceiver = receiver.subtract(p, null);
final Ray3 rayToReceiver = new Ray3(p, toReceiver.normalize(null));
final PickResults pickResultsToReceiver = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != mesh) {
if (towerCollisionMeshes == null || (towerCollisionMeshes != null && !towerCollisionMeshes.contains(spatial))) {
PickingUtil.findPick(spatial, rayToReceiver, pickResultsToReceiver, false);
if (pickResultsToReceiver.getNumber() != 0) {
break;
}
}
}
}
if (pickResultsToReceiver.getNumber() == 0) {
final double r = directRadiation * Atmosphere.getTransmittance(toReceiver.length() * Scene.getInstance().getAnnotationScale() * 0.001, false);
mirror.getSolarPotential()[iMinute] += r * a;
if (reflectionMapOnly) {
data.dailySolarIntensity[x][y] += r;
}
}
}
}
}
}
}
}
use of org.concord.energy3d.model.Foundation in project energy3d by concord-consortium.
the class SolarRadiation method initCollidables.
private void initCollidables() {
collidables.clear();
collidablesToParts.clear();
for (final HousePart part : Scene.getInstance().getParts()) {
if (part instanceof SolarCollector || part instanceof Tree || part instanceof Window) {
if (part instanceof Rack) {
final Rack rack = (Rack) part;
if (rack.isMonolithic()) {
final Spatial s = part.getRadiationCollisionSpatial();
collidables.add(s);
collidablesToParts.put(s, rack);
}
} else {
final Spatial s = part.getRadiationCollisionSpatial();
collidables.add(s);
collidablesToParts.put(s, part);
}
} else if (part instanceof Foundation) {
final Foundation foundation = (Foundation) part;
for (int i = 0; i < 4; i++) {
final Spatial s = foundation.getRadiationCollisionSpatial(i);
collidables.add(s);
collidablesToParts.put(s, foundation);
}
final List<Node> importedNodes = foundation.getImportedNodes();
if (importedNodes != null) {
for (final Node node : importedNodes) {
for (final Spatial s : node.getChildren()) {
collidables.add(s);
collidablesToParts.put(s, foundation);
}
}
}
} else if (part instanceof Wall) {
final Wall wall = (Wall) part;
if (wall.getType() == Wall.SOLID_WALL) {
final Spatial s = part.getRadiationCollisionSpatial();
collidables.add(s);
collidablesToParts.put(s, wall);
}
} else if (part instanceof Door) {
final Door door = (Door) part;
final Spatial s = door.getRadiationCollisionSpatial();
collidables.add(s);
collidablesToParts.put(s, door);
} else if (part instanceof Floor) {
final Floor floor = (Floor) part;
final Spatial s = floor.getRadiationCollisionSpatial();
collidables.add(s);
collidablesToParts.put(s, floor);
} else if (part instanceof Roof) {
final Roof roof = (Roof) part;
for (final Spatial roofPart : roof.getRoofPartsRoot().getChildren()) {
if (roofPart.getSceneHints().getCullHint() != CullHint.Always) {
final Spatial s = ((Node) roofPart).getChild(6);
collidables.add(s);
collidablesToParts.put(s, roof);
}
}
}
}
}
Aggregations