use of org.deeplearning4j.nn.conf.ComputationGraphConfiguration in project deeplearning4j by deeplearning4j.
the class ComputationGraphTestRNN method testTruncatedBPTTVsBPTT.
@Test
public void testTruncatedBPTTVsBPTT() {
//Under some (limited) circumstances, we expect BPTT and truncated BPTT to be identical
//Specifically TBPTT over entire data vector
int timeSeriesLength = 12;
int miniBatchSize = 7;
int nIn = 5;
int nOut = 4;
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).graphBuilder().addInputs("in").addLayer("0", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(nIn).nOut(7).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "in").addLayer("1", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(7).nOut(8).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "0").addLayer("out", new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).weightInit(WeightInit.DISTRIBUTION).nIn(8).nOut(nOut).activation(Activation.SOFTMAX).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "1").setOutputs("out").backprop(true).build();
assertEquals(BackpropType.Standard, conf.getBackpropType());
ComputationGraphConfiguration confTBPTT = new NeuralNetConfiguration.Builder().seed(12345).graphBuilder().addInputs("in").addLayer("0", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(nIn).nOut(7).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "in").addLayer("1", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(7).nOut(8).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "0").addLayer("out", new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).weightInit(WeightInit.DISTRIBUTION).nIn(8).nOut(nOut).activation(Activation.SOFTMAX).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "1").setOutputs("out").backprop(true).backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(timeSeriesLength).tBPTTBackwardLength(timeSeriesLength).build();
assertEquals(BackpropType.TruncatedBPTT, confTBPTT.getBackpropType());
Nd4j.getRandom().setSeed(12345);
ComputationGraph graph = new ComputationGraph(conf);
graph.init();
Nd4j.getRandom().setSeed(12345);
ComputationGraph graphTBPTT = new ComputationGraph(confTBPTT);
graphTBPTT.init();
assertTrue(graphTBPTT.getConfiguration().getBackpropType() == BackpropType.TruncatedBPTT);
assertTrue(graphTBPTT.getConfiguration().getTbpttFwdLength() == timeSeriesLength);
assertTrue(graphTBPTT.getConfiguration().getTbpttBackLength() == timeSeriesLength);
INDArray inputData = Nd4j.rand(new int[] { miniBatchSize, nIn, timeSeriesLength });
INDArray labels = Nd4j.rand(new int[] { miniBatchSize, nOut, timeSeriesLength });
graph.setInput(0, inputData);
graph.setLabel(0, labels);
graphTBPTT.setInput(0, inputData);
graphTBPTT.setLabel(0, labels);
graph.computeGradientAndScore();
graphTBPTT.computeGradientAndScore();
Pair<Gradient, Double> graphPair = graph.gradientAndScore();
Pair<Gradient, Double> graphTbpttPair = graphTBPTT.gradientAndScore();
assertEquals(graphPair.getFirst().gradientForVariable(), graphTbpttPair.getFirst().gradientForVariable());
assertEquals(graphPair.getSecond(), graphTbpttPair.getSecond());
//Check states: expect stateMap to be empty but tBpttStateMap to not be
Map<String, INDArray> l0StateMLN = graph.rnnGetPreviousState(0);
Map<String, INDArray> l0StateTBPTT = graphTBPTT.rnnGetPreviousState(0);
Map<String, INDArray> l1StateMLN = graph.rnnGetPreviousState(0);
Map<String, INDArray> l1StateTBPTT = graphTBPTT.rnnGetPreviousState(0);
Map<String, INDArray> l0TBPTTState = ((BaseRecurrentLayer<?>) graph.getLayer(0)).rnnGetTBPTTState();
Map<String, INDArray> l0TBPTTStateTBPTT = ((BaseRecurrentLayer<?>) graphTBPTT.getLayer(0)).rnnGetTBPTTState();
Map<String, INDArray> l1TBPTTState = ((BaseRecurrentLayer<?>) graph.getLayer(1)).rnnGetTBPTTState();
Map<String, INDArray> l1TBPTTStateTBPTT = ((BaseRecurrentLayer<?>) graphTBPTT.getLayer(1)).rnnGetTBPTTState();
assertTrue(l0StateMLN.isEmpty());
assertTrue(l0StateTBPTT.isEmpty());
assertTrue(l1StateMLN.isEmpty());
assertTrue(l1StateTBPTT.isEmpty());
assertTrue(l0TBPTTState.isEmpty());
assertTrue(l0TBPTTStateTBPTT.size() == 2);
assertTrue(l1TBPTTState.isEmpty());
assertTrue(l1TBPTTStateTBPTT.size() == 2);
INDArray tbpttActL0 = l0TBPTTStateTBPTT.get(GravesLSTM.STATE_KEY_PREV_ACTIVATION);
INDArray tbpttActL1 = l1TBPTTStateTBPTT.get(GravesLSTM.STATE_KEY_PREV_ACTIVATION);
Map<String, INDArray> activations = graph.feedForward(inputData, true);
INDArray l0Act = activations.get("0");
INDArray l1Act = activations.get("1");
INDArray expL0Act = l0Act.tensorAlongDimension(timeSeriesLength - 1, 1, 0);
INDArray expL1Act = l1Act.tensorAlongDimension(timeSeriesLength - 1, 1, 0);
assertEquals(tbpttActL0, expL0Act);
assertEquals(tbpttActL1, expL1Act);
}
use of org.deeplearning4j.nn.conf.ComputationGraphConfiguration in project deeplearning4j by deeplearning4j.
the class ComputationGraphTestRNN method testTBPTTLongerThanTS.
@Test
public void testTBPTTLongerThanTS() {
int tbpttLength = 100;
int timeSeriesLength = 20;
int miniBatchSize = 7;
int nIn = 5;
int nOut = 4;
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).graphBuilder().addInputs("in").addLayer("0", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(nIn).nOut(7).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "in").addLayer("1", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(7).nOut(8).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "0").addLayer("out", new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).weightInit(WeightInit.DISTRIBUTION).nIn(8).nOut(nOut).activation(Activation.SOFTMAX).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "1").setOutputs("out").pretrain(false).backprop(true).backpropType(BackpropType.TruncatedBPTT).tBPTTBackwardLength(tbpttLength).tBPTTForwardLength(tbpttLength).build();
Nd4j.getRandom().setSeed(12345);
ComputationGraph graph = new ComputationGraph(conf);
graph.init();
INDArray inputLong = Nd4j.rand(new int[] { miniBatchSize, nIn, timeSeriesLength });
INDArray labelsLong = Nd4j.rand(new int[] { miniBatchSize, nOut, timeSeriesLength });
INDArray initialParams = graph.params().dup();
graph.fit(new INDArray[] { inputLong }, new INDArray[] { labelsLong });
INDArray afterParams = graph.params();
assertNotEquals(initialParams, afterParams);
}
use of org.deeplearning4j.nn.conf.ComputationGraphConfiguration in project deeplearning4j by deeplearning4j.
the class ComputationGraphTestRNN method testRnnTimeStepGravesLSTM.
@Test
public void testRnnTimeStepGravesLSTM() {
Nd4j.getRandom().setSeed(12345);
int timeSeriesLength = 12;
//4 layer network: 2 GravesLSTM + DenseLayer + RnnOutputLayer. Hence also tests preprocessors.
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).graphBuilder().addInputs("in").addLayer("0", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(5).nOut(7).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "in").addLayer("1", new org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder().nIn(7).nOut(8).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "0").addLayer("2", new DenseLayer.Builder().nIn(8).nOut(9).activation(Activation.TANH).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "1").addLayer("3", new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).weightInit(WeightInit.DISTRIBUTION).nIn(9).nOut(4).activation(Activation.SOFTMAX).weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 0.5)).build(), "2").setOutputs("3").inputPreProcessor("2", new RnnToFeedForwardPreProcessor()).inputPreProcessor("3", new FeedForwardToRnnPreProcessor()).pretrain(false).backprop(true).build();
ComputationGraph graph = new ComputationGraph(conf);
graph.init();
INDArray input = Nd4j.rand(new int[] { 3, 5, timeSeriesLength });
Map<String, INDArray> allOutputActivations = graph.feedForward(input, true);
INDArray fullOutL0 = allOutputActivations.get("0");
INDArray fullOutL1 = allOutputActivations.get("1");
INDArray fullOutL3 = allOutputActivations.get("3");
assertArrayEquals(new int[] { 3, 7, timeSeriesLength }, fullOutL0.shape());
assertArrayEquals(new int[] { 3, 8, timeSeriesLength }, fullOutL1.shape());
assertArrayEquals(new int[] { 3, 4, timeSeriesLength }, fullOutL3.shape());
int[] inputLengths = { 1, 2, 3, 4, 6, 12 };
//Should get the same result regardless of step size; should be identical to standard forward pass
for (int i = 0; i < inputLengths.length; i++) {
int inLength = inputLengths[i];
//each of length inLength
int nSteps = timeSeriesLength / inLength;
graph.rnnClearPreviousState();
for (int j = 0; j < nSteps; j++) {
int startTimeRange = j * inLength;
int endTimeRange = startTimeRange + inLength;
INDArray inputSubset = input.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(startTimeRange, endTimeRange));
if (inLength > 1)
assertTrue(inputSubset.size(2) == inLength);
INDArray[] outArr = graph.rnnTimeStep(inputSubset);
assertEquals(1, outArr.length);
INDArray out = outArr[0];
INDArray expOutSubset;
if (inLength == 1) {
int[] sizes = new int[] { fullOutL3.size(0), fullOutL3.size(1), 1 };
expOutSubset = Nd4j.create(sizes);
expOutSubset.tensorAlongDimension(0, 1, 0).assign(fullOutL3.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(startTimeRange)));
} else {
expOutSubset = fullOutL3.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(startTimeRange, endTimeRange));
}
assertEquals(expOutSubset, out);
Map<String, INDArray> currL0State = graph.rnnGetPreviousState("0");
Map<String, INDArray> currL1State = graph.rnnGetPreviousState("1");
INDArray lastActL0 = currL0State.get(GravesLSTM.STATE_KEY_PREV_ACTIVATION);
INDArray lastActL1 = currL1State.get(GravesLSTM.STATE_KEY_PREV_ACTIVATION);
INDArray expLastActL0 = fullOutL0.tensorAlongDimension(endTimeRange - 1, 1, 0);
INDArray expLastActL1 = fullOutL1.tensorAlongDimension(endTimeRange - 1, 1, 0);
assertEquals(expLastActL0, lastActL0);
assertEquals(expLastActL1, lastActL1);
}
}
}
use of org.deeplearning4j.nn.conf.ComputationGraphConfiguration in project deeplearning4j by deeplearning4j.
the class TestConvolutionModes method testStrictTruncateConvolutionModeCompGraph.
@Test
public void testStrictTruncateConvolutionModeCompGraph() {
//Idea: with convolution mode == Truncate, input size shouldn't matter (within the bounds of truncated edge),
// and edge data shouldn't affect the output
//Use: 9x9, kernel 3, stride 3, padding 0
// Should get same output for 10x10 and 11x11...
Nd4j.getRandom().setSeed(12345);
int[] minibatches = { 1, 3 };
int[] inDepths = { 1, 3 };
int[] inSizes = { 9, 10, 11 };
for (boolean isSubsampling : new boolean[] { false, true }) {
for (int minibatch : minibatches) {
for (int inDepth : inDepths) {
INDArray origData = Nd4j.rand(new int[] { minibatch, inDepth, 9, 9 });
for (int inSize : inSizes) {
for (ConvolutionMode cm : new ConvolutionMode[] { ConvolutionMode.Strict, ConvolutionMode.Truncate }) {
INDArray inputData = Nd4j.rand(new int[] { minibatch, inDepth, inSize, inSize });
inputData.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(0, 9), NDArrayIndex.interval(0, 9)).assign(origData);
Layer layer;
if (isSubsampling) {
layer = new SubsamplingLayer.Builder().kernelSize(3, 3).stride(3, 3).padding(0, 0).build();
} else {
layer = new ConvolutionLayer.Builder().kernelSize(3, 3).stride(3, 3).padding(0, 0).nOut(3).build();
}
ComputationGraph net = null;
try {
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().weightInit(WeightInit.XAVIER).convolutionMode(cm).graphBuilder().addInputs("in").addLayer("0", layer, "in").addLayer("1", new OutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MCXENT).nOut(3).build(), "0").setOutputs("1").setInputTypes(InputType.convolutional(inSize, inSize, inDepth)).build();
net = new ComputationGraph(conf);
net.init();
if (inSize > 9 && cm == ConvolutionMode.Strict) {
fail("Expected exception");
}
} catch (DL4JException e) {
if (inSize == 9 || cm != ConvolutionMode.Strict) {
e.printStackTrace();
fail("Unexpected exception");
}
//Expected exception
continue;
} catch (Exception e) {
e.printStackTrace();
fail("Unexpected exception");
}
INDArray out = net.outputSingle(origData);
INDArray out2 = net.outputSingle(inputData);
assertEquals(out, out2);
}
}
}
}
}
}
use of org.deeplearning4j.nn.conf.ComputationGraphConfiguration in project deeplearning4j by deeplearning4j.
the class TestCustomLayers method testJsonComputationGraph.
@Test
public void testJsonComputationGraph() {
//ComputationGraph with a custom layer; check JSON and YAML config actually works...
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().learningRate(0.1).graphBuilder().addInputs("in").addLayer("0", new DenseLayer.Builder().nIn(10).nOut(10).build(), "in").addLayer("1", new CustomLayer(3.14159), "0").addLayer("2", new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(10).nOut(10).build(), "1").setOutputs("2").pretrain(false).backprop(true).build();
String json = conf.toJson();
String yaml = conf.toYaml();
System.out.println(json);
ComputationGraphConfiguration confFromJson = ComputationGraphConfiguration.fromJson(json);
assertEquals(conf, confFromJson);
ComputationGraphConfiguration confFromYaml = ComputationGraphConfiguration.fromYaml(yaml);
assertEquals(conf, confFromYaml);
}
Aggregations