use of org.deeplearning4j.nn.gradient.Gradient in project deeplearning4j by deeplearning4j.
the class BaseOptimizer method optimize.
/**
* Optimize call. This runs the optimizer.
* @return whether it converged or not
*/
// TODO add flag to allow retaining state between mini batches and when to apply updates
@Override
public boolean optimize() {
//validate the input before training
INDArray gradient;
INDArray searchDirection;
INDArray parameters;
Pair<Gradient, Double> pair = gradientAndScore();
if (searchState.isEmpty()) {
searchState.put(GRADIENT_KEY, pair.getFirst().gradient());
//Only do this once
setupSearchState(pair);
} else {
searchState.put(GRADIENT_KEY, pair.getFirst().gradient());
}
/*
* Commented out for now; this has been problematic for testing/debugging
* Revisit & re-enable later. */
for (TerminationCondition condition : terminationConditions) {
if (condition.terminate(0.0, 0.0, new Object[] { pair.getFirst().gradient() })) {
log.info("Hit termination condition " + condition.getClass().getName());
return true;
}
}
//calculate initial search direction
preProcessLine();
for (int i = 0; i < conf.getNumIterations(); i++) {
gradient = (INDArray) searchState.get(GRADIENT_KEY);
searchDirection = (INDArray) searchState.get(SEARCH_DIR);
parameters = (INDArray) searchState.get(PARAMS_KEY);
//perform one line search optimization
try {
step = lineMaximizer.optimize(parameters, gradient, searchDirection);
} catch (InvalidStepException e) {
log.warn("Invalid step...continuing another iteration: {}", e.getMessage());
step = 0.0;
}
//Update parameters based on final/best step size returned by line search:
if (step != 0.0) {
//Calculate params. given step size
stepFunction.step(parameters, searchDirection, step);
model.setParams(parameters);
} else {
log.debug("Step size returned by line search is 0.0.");
}
pair = gradientAndScore();
//updates searchDirection
postStep(pair.getFirst().gradient());
//invoke listeners
int iterationCount = BaseOptimizer.getIterationCount(model);
for (IterationListener listener : iterationListeners) listener.iterationDone(model, iterationCount);
//check for termination conditions based on absolute change in score
checkTerminalConditions(pair.getFirst().gradient(), oldScore, score, i);
incrementIterationCount(model, 1);
}
return true;
}
use of org.deeplearning4j.nn.gradient.Gradient in project deeplearning4j by deeplearning4j.
the class MultiLayerUpdater method update.
@Override
public void update(Layer layer, Gradient gradient, int iteration, int batchSize) {
MultiLayerNetwork mln = (MultiLayerNetwork) layer;
Gradient[] layerGradients = new Gradient[layerUpdaters.length];
for (int i = 0; i < layerGradients.length; i++) layerGradients[i] = new DefaultGradient();
for (Map.Entry<String, INDArray> gradientPair : gradient.gradientForVariable().entrySet()) {
String key = gradientPair.getKey();
int idx = key.indexOf('_');
if (idx == -1)
throw new IllegalStateException("Invalid key: MuliLayerNetwork Gradient key does not have layer separator: \"" + key + "\"");
int layerIdx = Integer.parseInt(key.substring(0, idx));
String newKey = key.substring(idx + 1);
layerGradients[layerIdx].gradientForVariable().put(newKey, gradientPair.getValue());
}
for (int i = 0; i < layerUpdaters.length; i++) {
layerUpdaters[i].update(mln.getLayer(i), layerGradients[i], iteration, batchSize);
}
}
use of org.deeplearning4j.nn.gradient.Gradient in project deeplearning4j by deeplearning4j.
the class TestCompGraphCNN method testBackwardIrisBasic.
@Test
public void testBackwardIrisBasic() {
//Now: set parameters of both networks to be identical. Then feedforward, and check we get the same outputs
Nd4j.getRandom().setSeed(12345);
INDArray input = ds.getFeatureMatrix();
INDArray labels = ds.getLabels();
graph.setInput(0, input.dup());
graph.setLabel(0, labels.dup());
//Compute gradients
graph.computeGradientAndScore();
Pair<Gradient, Double> graphGradScore = graph.gradientAndScore();
// Check gradients
}
use of org.deeplearning4j.nn.gradient.Gradient in project deeplearning4j by deeplearning4j.
the class TestVariableLengthTSCG method testVariableLengthSimple.
@Test
public void testVariableLengthSimple() {
//Test: Simple RNN layer + RNNOutputLayer
//Length of 4 for standard
//Length of 5 with last time step output mask set to 0
//Expect the same gradients etc in both cases...
int[] miniBatchSizes = { 1, 2, 5 };
int nOut = 1;
Random r = new Random(12345);
for (int nExamples : miniBatchSizes) {
Nd4j.getRandom().setSeed(12345);
ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1).updater(Updater.SGD).learningRate(0.1).seed(12345).graphBuilder().addInputs("in").addLayer("0", new GravesLSTM.Builder().activation(Activation.TANH).nIn(2).nOut(2).build(), "in").addLayer("1", new RnnOutputLayer.Builder().lossFunction(LossFunctions.LossFunction.MSE).nIn(2).nOut(1).build(), "0").setOutputs("1").build();
ComputationGraph net = new ComputationGraph(conf);
net.init();
INDArray in1 = Nd4j.rand(new int[] { nExamples, 2, 4 });
INDArray in2 = Nd4j.rand(new int[] { nExamples, 2, 5 });
in2.put(new INDArrayIndex[] { NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(0, 3, true) }, in1);
assertEquals(in1, in2.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(0, 4)));
INDArray labels1 = Nd4j.rand(new int[] { nExamples, 1, 4 });
INDArray labels2 = Nd4j.create(nExamples, 1, 5);
labels2.put(new INDArrayIndex[] { NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(0, 3, true) }, labels1);
assertEquals(labels1, labels2.get(NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.interval(0, 4)));
INDArray labelMask = Nd4j.ones(nExamples, 5);
for (int j = 0; j < nExamples; j++) {
labelMask.putScalar(new int[] { j, 4 }, 0);
}
net.setInput(0, in1);
net.setLabel(0, labels1);
net.computeGradientAndScore();
double score1 = net.score();
Gradient g1 = net.gradient();
net.setInput(0, in2);
net.setLabel(0, labels2);
net.setLayerMaskArrays(null, new INDArray[] { labelMask });
net.computeGradientAndScore();
double score2 = net.score();
Gradient g2 = net.gradient();
//Scores and gradients should be identical for two cases (given mask array)
assertEquals(score1, score2, 0.0);
Map<String, INDArray> g1map = g1.gradientForVariable();
Map<String, INDArray> g2map = g2.gradientForVariable();
for (String s : g1map.keySet()) {
INDArray g1s = g1map.get(s);
INDArray g2s = g2map.get(s);
assertEquals(s, g1s, g2s);
}
// (a) score, (b) gradients
for (int i = 0; i < nExamples; i++) {
for (int j = 0; j < nOut; j++) {
double d = r.nextDouble();
labels2.putScalar(new int[] { i, j, 4 }, d);
}
net.setLabel(0, labels2);
net.computeGradientAndScore();
double score2a = net.score();
Gradient g2a = net.gradient();
assertEquals(score2, score2a, 0.0);
for (String s : g2map.keySet()) {
INDArray g2s = g2map.get(s);
INDArray g2sa = g2a.getGradientFor(s);
assertEquals(s, g2s, g2sa);
}
}
}
}
use of org.deeplearning4j.nn.gradient.Gradient in project deeplearning4j by deeplearning4j.
the class GradientCheckUtil method checkGradients.
/**
* Check backprop gradients for a MultiLayerNetwork.
* @param mln MultiLayerNetwork to test. This must be initialized.
* @param epsilon Usually on the order/ of 1e-4 or so.
* @param maxRelError Maximum relative error. Usually < 1e-5 or so, though maybe more for deep networks or those with nonlinear activation
* @param minAbsoluteError Minimum absolute error to cause a failure. Numerical gradients can be non-zero due to precision issues.
* For example, 0.0 vs. 1e-18: relative error is 1.0, but not really a failure
* @param print Whether to print full pass/failure details for each parameter gradient
* @param exitOnFirstError If true: return upon first failure. If false: continue checking even if
* one parameter gradient has failed. Typically use false for debugging, true for unit tests.
* @param input Input array to use for forward pass. May be mini-batch data.
* @param labels Labels/targets to use to calculate backprop gradient. May be mini-batch data.
* @return true if gradients are passed, false otherwise.
*/
public static boolean checkGradients(MultiLayerNetwork mln, double epsilon, double maxRelError, double minAbsoluteError, boolean print, boolean exitOnFirstError, INDArray input, INDArray labels) {
//Basic sanity checks on input:
if (epsilon <= 0.0 || epsilon > 0.1)
throw new IllegalArgumentException("Invalid epsilon: expect epsilon in range (0,0.1], usually 1e-4 or so");
if (maxRelError <= 0.0 || maxRelError > 0.25)
throw new IllegalArgumentException("Invalid maxRelativeError: " + maxRelError);
if (!(mln.getOutputLayer() instanceof IOutputLayer))
throw new IllegalArgumentException("Cannot check backprop gradients without OutputLayer");
//Check network configuration:
int layerCount = 0;
for (NeuralNetConfiguration n : mln.getLayerWiseConfigurations().getConfs()) {
org.deeplearning4j.nn.conf.Updater u = n.getLayer().getUpdater();
if (u == org.deeplearning4j.nn.conf.Updater.SGD) {
//Must have LR of 1.0
double lr = n.getLayer().getLearningRate();
if (lr != 1.0) {
throw new IllegalStateException("When using SGD updater, must also use lr=1.0 for layer " + layerCount + "; got " + u + " with lr=" + lr + " for layer \"" + n.getLayer().getLayerName() + "\"");
}
} else if (u != org.deeplearning4j.nn.conf.Updater.NONE) {
throw new IllegalStateException("Must have Updater.NONE (or SGD + lr=1.0) for layer " + layerCount + "; got " + u);
}
double dropout = n.getLayer().getDropOut();
if (n.isUseRegularization() && dropout != 0.0) {
throw new IllegalStateException("Must have dropout == 0.0 for gradient checks - got dropout = " + dropout + " for layer " + layerCount);
}
IActivation activation = n.getLayer().getActivationFn();
if (activation != null) {
if (!VALID_ACTIVATION_FUNCTIONS.contains(activation.getClass())) {
log.warn("Layer " + layerCount + " is possibly using an unsuitable activation function: " + activation.getClass() + ". Activation functions for gradient checks must be smooth (like sigmoid, tanh, softmax) and not " + "contain discontinuities like ReLU or LeakyReLU (these may cause spurious failures)");
}
}
}
mln.setInput(input);
mln.setLabels(labels);
mln.computeGradientAndScore();
Pair<Gradient, Double> gradAndScore = mln.gradientAndScore();
Updater updater = UpdaterCreator.getUpdater(mln);
updater.update(mln, gradAndScore.getFirst(), 0, mln.batchSize());
//need dup: gradients are a *view* of the full gradient array (which will change every time backprop is done)
INDArray gradientToCheck = gradAndScore.getFirst().gradient().dup();
//need dup: params are a *view* of full parameters
INDArray originalParams = mln.params().dup();
int nParams = originalParams.length();
Map<String, INDArray> paramTable = mln.paramTable();
List<String> paramNames = new ArrayList<>(paramTable.keySet());
int[] paramEnds = new int[paramNames.size()];
paramEnds[0] = paramTable.get(paramNames.get(0)).length();
for (int i = 1; i < paramEnds.length; i++) {
paramEnds[i] = paramEnds[i - 1] + paramTable.get(paramNames.get(i)).length();
}
int totalNFailures = 0;
double maxError = 0.0;
DataSet ds = new DataSet(input, labels);
int currParamNameIdx = 0;
//Assumption here: params is a view that we can modify in-place
INDArray params = mln.params();
for (int i = 0; i < nParams; i++) {
//Get param name
if (i >= paramEnds[currParamNameIdx]) {
currParamNameIdx++;
}
String paramName = paramNames.get(currParamNameIdx);
//(w+epsilon): Do forward pass and score
double origValue = params.getDouble(i);
params.putScalar(i, origValue + epsilon);
double scorePlus = mln.score(ds, true);
//(w-epsilon): Do forward pass and score
params.putScalar(i, origValue - epsilon);
double scoreMinus = mln.score(ds, true);
//Reset original param value
params.putScalar(i, origValue);
//Calculate numerical parameter gradient:
double scoreDelta = scorePlus - scoreMinus;
double numericalGradient = scoreDelta / (2 * epsilon);
if (Double.isNaN(numericalGradient))
throw new IllegalStateException("Numerical gradient was NaN for parameter " + i + " of " + nParams);
double backpropGradient = gradientToCheck.getDouble(i);
//http://cs231n.github.io/neural-networks-3/#gradcheck
//use mean centered
double relError = Math.abs(backpropGradient - numericalGradient) / (Math.abs(numericalGradient) + Math.abs(backpropGradient));
if (backpropGradient == 0.0 && numericalGradient == 0.0)
//Edge case: i.e., RNNs with time series length of 1.0
relError = 0.0;
if (relError > maxError)
maxError = relError;
if (relError > maxRelError || Double.isNaN(relError)) {
double absError = Math.abs(backpropGradient - numericalGradient);
if (absError < minAbsoluteError) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError + "; absolute error = " + absError + " < minAbsoluteError = " + minAbsoluteError);
} else {
if (print)
log.info("Param " + i + " (" + paramName + ") FAILED: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError + ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus);
if (exitOnFirstError)
return false;
totalNFailures++;
}
} else if (print) {
log.info("Param " + i + " (" + paramName + ") passed: grad= " + backpropGradient + ", numericalGrad= " + numericalGradient + ", relError= " + relError);
}
}
if (print) {
int nPass = nParams - totalNFailures;
log.info("GradientCheckUtil.checkGradients(): " + nParams + " params checked, " + nPass + " passed, " + totalNFailures + " failed. Largest relative error = " + maxError);
}
return totalNFailures == 0;
}
Aggregations