use of org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution in project deeplearning4j by deeplearning4j.
the class TestReconstructionDistributions method gradientCheckReconstructionDistributions.
@Test
public void gradientCheckReconstructionDistributions() {
double eps = 1e-6;
double maxRelError = 1e-6;
double minAbsoluteError = 1e-9;
Nd4j.getRandom().setSeed(12345);
int inputSize = 4;
int[] mbs = new int[] { 1, 3 };
Random r = new Random(12345);
ReconstructionDistribution[] distributions = new ReconstructionDistribution[] { new GaussianReconstructionDistribution("identity"), new GaussianReconstructionDistribution("tanh"), new BernoulliReconstructionDistribution("sigmoid"), new ExponentialReconstructionDistribution("identity"), new ExponentialReconstructionDistribution("tanh") };
List<String> passes = new ArrayList<>();
List<String> failures = new ArrayList<>();
for (ReconstructionDistribution rd : distributions) {
for (int minibatch : mbs) {
INDArray x;
INDArray distributionParams;
if (rd instanceof GaussianReconstructionDistribution) {
distributionParams = Nd4j.rand(minibatch, inputSize * 2).muli(2).subi(1);
x = Nd4j.rand(minibatch, inputSize);
} else if (rd instanceof BernoulliReconstructionDistribution) {
distributionParams = Nd4j.rand(minibatch, inputSize).muli(2).subi(1);
x = Nd4j.zeros(minibatch, inputSize);
for (int i = 0; i < minibatch; i++) {
for (int j = 0; j < inputSize; j++) {
x.putScalar(i, j, r.nextInt(2));
}
}
} else if (rd instanceof ExponentialReconstructionDistribution) {
distributionParams = Nd4j.rand(minibatch, inputSize).muli(2).subi(1);
x = Nd4j.rand(minibatch, inputSize);
} else {
throw new RuntimeException();
}
INDArray gradient = rd.gradient(x, distributionParams);
String testName = "minibatch = " + minibatch + ", size = " + inputSize + ", Distribution = " + rd;
System.out.println("\n\n***** Starting test: " + testName + "*****");
int totalFailureCount = 0;
for (int i = 0; i < distributionParams.size(1); i++) {
for (int j = 0; j < distributionParams.size(0); j++) {
double initial = distributionParams.getDouble(j, i);
distributionParams.putScalar(j, i, initial + eps);
double scorePlus = rd.negLogProbability(x, distributionParams, false);
distributionParams.putScalar(j, i, initial - eps);
double scoreMinus = rd.negLogProbability(x, distributionParams, false);
distributionParams.putScalar(j, i, initial);
double numericalGrad = (scorePlus - scoreMinus) / (2.0 * eps);
double backpropGrad = gradient.getDouble(j, i);
double relError = Math.abs(numericalGrad - backpropGrad) / (Math.abs(numericalGrad) + Math.abs(backpropGrad));
double absError = Math.abs(backpropGrad - numericalGrad);
if (relError > maxRelError || Double.isNaN(relError)) {
if (absError < minAbsoluteError) {
log.info("Input (" + j + "," + i + ") passed: grad= " + backpropGrad + ", numericalGrad= " + numericalGrad + ", relError= " + relError + "; absolute error = " + absError + " < minAbsoluteError = " + minAbsoluteError);
} else {
log.info("Input (" + j + "," + i + ") FAILED: grad= " + backpropGrad + ", numericalGrad= " + numericalGrad + ", relError= " + relError + ", scorePlus=" + scorePlus + ", scoreMinus= " + scoreMinus);
totalFailureCount++;
}
} else {
log.info("Input (" + j + "," + i + ") passed: grad= " + backpropGrad + ", numericalGrad= " + numericalGrad + ", relError= " + relError);
}
}
}
if (totalFailureCount > 0) {
failures.add(testName);
} else {
passes.add(testName);
}
}
}
System.out.println("\n\n\n +++++ Test Passes +++++");
for (String s : passes) {
System.out.println(s);
}
System.out.println("\n\n\n +++++ Test Faliures +++++");
for (String s : failures) {
System.out.println(s);
}
assertEquals(0, failures.size());
}
use of org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution in project deeplearning4j by deeplearning4j.
the class TestReconstructionDistributions method testExponentialLogProb.
@Test
public void testExponentialLogProb() {
Nd4j.getRandom().setSeed(12345);
int inputSize = 4;
int[] mbs = new int[] { 1, 2, 5 };
Random r = new Random(12345);
for (boolean average : new boolean[] { true, false }) {
for (int minibatch : mbs) {
INDArray x = Nd4j.zeros(minibatch, inputSize);
for (int i = 0; i < minibatch; i++) {
for (int j = 0; j < inputSize; j++) {
x.putScalar(i, j, r.nextInt(2));
}
}
//i.e., pre-afn gamma
INDArray distributionParams = Nd4j.rand(minibatch, inputSize).muli(2).subi(1);
INDArray gammas = Transforms.tanh(distributionParams, true);
ReconstructionDistribution dist = new ExponentialReconstructionDistribution("tanh");
double negLogProb = dist.negLogProbability(x, distributionParams, average);
INDArray exampleNegLogProb = dist.exampleNegLogProbability(x, distributionParams);
assertArrayEquals(new int[] { minibatch, 1 }, exampleNegLogProb.shape());
//Calculate the same thing, but using Apache Commons math
double logProbSum = 0.0;
for (int i = 0; i < minibatch; i++) {
double exampleSum = 0.0;
for (int j = 0; j < inputSize; j++) {
double gamma = gammas.getDouble(i, j);
double lambda = Math.exp(gamma);
double mean = 1.0 / lambda;
//Commons math uses mean = 1/lambda
ExponentialDistribution exp = new ExponentialDistribution(mean);
double xVal = x.getDouble(i, j);
double thisLogProb = exp.logDensity(xVal);
logProbSum += thisLogProb;
exampleSum += thisLogProb;
}
assertEquals(-exampleNegLogProb.getDouble(i), exampleSum, 1e-6);
}
double expNegLogProb;
if (average) {
expNegLogProb = -logProbSum / minibatch;
} else {
expNegLogProb = -logProbSum;
}
// System.out.println(x);
// System.out.println(expNegLogProb + "\t" + logProb + "\t" + (logProb / expNegLogProb));
assertEquals(expNegLogProb, negLogProb, 1e-6);
//Also: check random sampling...
int count = minibatch * inputSize;
INDArray arr = Nd4j.linspace(-3, 3, count).reshape(minibatch, inputSize);
INDArray sampleMean = dist.generateAtMean(arr);
INDArray sampleRandom = dist.generateRandom(arr);
for (int i = 0; i < minibatch; i++) {
for (int j = 0; j < inputSize; j++) {
double d1 = sampleMean.getDouble(i, j);
double d2 = sampleRandom.getDouble(i, j);
assertTrue(d1 >= 0.0);
assertTrue(d2 >= 0.0);
}
}
}
}
}
Aggregations