use of org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction in project deeplearning4j by deeplearning4j.
the class NeuralNetConfigurationTest method testL1L2ByParam.
@Test
public void testL1L2ByParam() {
double l1 = 0.01;
double l2 = 0.07;
int[] nIns = { 4, 3, 3 };
int[] nOuts = { 3, 3, 3 };
int oldScore = 1;
int newScore = 1;
int iteration = 3;
INDArray gradientW = Nd4j.ones(nIns[0], nOuts[0]);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().learningRate(8).regularization(true).l1(l1).l2(l2).list().layer(0, new DenseLayer.Builder().nIn(nIns[0]).nOut(nOuts[0]).updater(org.deeplearning4j.nn.conf.Updater.SGD).build()).layer(1, new BatchNormalization.Builder().nIn(nIns[1]).nOut(nOuts[1]).l2(0.5).build()).layer(2, new OutputLayer.Builder().nIn(nIns[2]).nOut(nOuts[2]).updater(org.deeplearning4j.nn.conf.Updater.SGD).build()).backprop(true).pretrain(false).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
ConvexOptimizer opt = new StochasticGradientDescent(net.getDefaultConfiguration(), new NegativeDefaultStepFunction(), null, net);
opt.checkTerminalConditions(gradientW, oldScore, newScore, iteration);
assertEquals(l1, net.getLayer(0).conf().getL1ByParam("W"), 1e-4);
assertEquals(0.0, net.getLayer(0).conf().getL1ByParam("b"), 0.0);
assertEquals(0.0, net.getLayer(1).conf().getL2ByParam("beta"), 0.0);
assertEquals(0.0, net.getLayer(1).conf().getL2ByParam("gamma"), 0.0);
assertEquals(0.0, net.getLayer(1).conf().getL2ByParam("mean"), 0.0);
assertEquals(0.0, net.getLayer(1).conf().getL2ByParam("var"), 0.0);
assertEquals(l2, net.getLayer(2).conf().getL2ByParam("W"), 1e-4);
assertEquals(0.0, net.getLayer(2).conf().getL2ByParam("b"), 0.0);
}
use of org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction in project deeplearning4j by deeplearning4j.
the class NeuralNetConfigurationTest method testLearningRateByParam.
@Test
public void testLearningRateByParam() {
double lr = 0.01;
double biasLr = 0.02;
int[] nIns = { 4, 3, 3 };
int[] nOuts = { 3, 3, 3 };
int oldScore = 1;
int newScore = 1;
int iteration = 3;
INDArray gradientW = Nd4j.ones(nIns[0], nOuts[0]);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().learningRate(0.3).list().layer(0, new DenseLayer.Builder().nIn(nIns[0]).nOut(nOuts[0]).updater(org.deeplearning4j.nn.conf.Updater.SGD).learningRate(lr).biasLearningRate(biasLr).build()).layer(1, new BatchNormalization.Builder().nIn(nIns[1]).nOut(nOuts[1]).learningRate(0.7).build()).layer(2, new OutputLayer.Builder().nIn(nIns[2]).nOut(nOuts[2]).updater(org.deeplearning4j.nn.conf.Updater.SGD).build()).backprop(true).pretrain(false).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
ConvexOptimizer opt = new StochasticGradientDescent(net.getDefaultConfiguration(), new NegativeDefaultStepFunction(), null, net);
opt.checkTerminalConditions(gradientW, oldScore, newScore, iteration);
assertEquals(lr, net.getLayer(0).conf().getLearningRateByParam("W"), 1e-4);
assertEquals(biasLr, net.getLayer(0).conf().getLearningRateByParam("b"), 1e-4);
assertEquals(0.7, net.getLayer(1).conf().getLearningRateByParam("gamma"), 1e-4);
//From global LR
assertEquals(0.3, net.getLayer(2).conf().getLearningRateByParam("W"), 1e-4);
//From global LR
assertEquals(0.3, net.getLayer(2).conf().getLearningRateByParam("b"), 1e-4);
}
use of org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction in project deeplearning4j by deeplearning4j.
the class BackTrackLineSearch method optimize.
// returns fraction of step size if found a good step
// returns 0.0 if could not step in direction
// step == alam and score == f in book
/**
* @param parameters the parameters to optimize
* @param gradients the line/rate of change
* @param searchDirection the point for the line search to go in
* @return the next step size
* @throws InvalidStepException
*/
@Override
public double optimize(INDArray parameters, INDArray gradients, INDArray searchDirection) throws InvalidStepException {
double test, stepMin, step, step2, oldStep, tmpStep;
double rhs1, rhs2, a, b, disc, score, scoreAtStart, score2;
minObjectiveFunction = (stepFunction instanceof NegativeDefaultStepFunction || stepFunction instanceof NegativeGradientStepFunction);
Level1 l1Blas = Nd4j.getBlasWrapper().level1();
double sum = l1Blas.nrm2(searchDirection);
double slope = -1f * Nd4j.getBlasWrapper().dot(searchDirection, gradients);
log.debug("slope = {}", slope);
INDArray maxOldParams = abs(parameters);
Nd4j.getExecutioner().exec(new ScalarSetValue(maxOldParams, 1));
INDArray testMatrix = abs(gradients).divi(maxOldParams);
test = testMatrix.max(Integer.MAX_VALUE).getDouble(0);
// initially, step = 1.0, i.e. take full Newton step
step = 1.0;
// relative convergence tolerance
stepMin = relTolx / test;
oldStep = 0.0;
step2 = 0.0;
score = score2 = scoreAtStart = layer.score();
double bestScore = score;
double bestStepSize = 1.0;
if (log.isTraceEnabled()) {
double norm1 = l1Blas.asum(searchDirection);
int infNormIdx = l1Blas.iamax(searchDirection);
double infNorm = FastMath.max(Float.NEGATIVE_INFINITY, searchDirection.getDouble(infNormIdx));
log.trace("ENTERING BACKTRACK\n");
log.trace("Entering BackTrackLineSearch, value = " + scoreAtStart + ",\ndirection.oneNorm:" + norm1 + " direction.infNorm:" + infNorm);
}
if (sum > stepMax) {
log.warn("Attempted step too big. scaling: sum= {}, stepMax= {}", sum, stepMax);
searchDirection.muli(stepMax / sum);
}
// if (slope >= 0.0) {
// throw new InvalidStepException("Slope " + slope + " is >= 0.0. Expect slope < 0.0 when minimizing objective function");
// }
// find maximum lambda
// converge when (delta x) / x < REL_TOLX for all coordinates.
// the largest step size that triggers this threshold is precomputed and saved in stepMin
// look for step size in direction given by "line"
INDArray candidateParameters = null;
for (int iteration = 0; iteration < maxIterations; iteration++) {
if (log.isTraceEnabled()) {
log.trace("BackTrack loop iteration {} : step={}, oldStep={}", iteration, step, oldStep);
log.trace("before step, x.1norm: {} \nstep: {} \noldStep: {}", parameters.norm1(Integer.MAX_VALUE), step, oldStep);
}
if (step == oldStep)
throw new IllegalArgumentException("Current step == oldStep");
// step
candidateParameters = parameters.dup('f');
stepFunction.step(candidateParameters, searchDirection, step);
oldStep = step;
if (log.isTraceEnabled()) {
double norm1 = l1Blas.asum(candidateParameters);
log.trace("after step, x.1norm: " + norm1);
}
// check for convergence on delta x
if ((step < stepMin) || Nd4j.getExecutioner().execAndReturn(new Eps(parameters, candidateParameters, Shape.toOffsetZeroCopy(candidateParameters, 'f'), candidateParameters.length())).sum(Integer.MAX_VALUE).getDouble(0) == candidateParameters.length()) {
score = setScoreFor(parameters);
log.debug("EXITING BACKTRACK: Jump too small (stepMin = {}). Exiting and using original params. Score = {}", stepMin, score);
return 0.0;
}
score = setScoreFor(candidateParameters);
log.debug("Model score after step = {}", score);
//Score best step size for use if we terminate on maxIterations
if ((minObjectiveFunction && score < bestScore) || (!minObjectiveFunction && score > bestScore)) {
bestScore = score;
bestStepSize = step;
}
//Sufficient decrease in cost/loss function (Wolfe condition / Armijo condition)
if (minObjectiveFunction && score <= scoreAtStart + ALF * step * slope) {
log.debug("Sufficient decrease (Wolfe cond.), exiting backtrack on iter {}: score={}, scoreAtStart={}", iteration, score, scoreAtStart);
if (score > scoreAtStart)
throw new IllegalStateException("Function did not decrease: score = " + score + " > " + scoreAtStart + " = oldScore");
return step;
}
//Sufficient increase in cost/loss function (Wolfe condition / Armijo condition)
if (!minObjectiveFunction && score >= scoreAtStart + ALF * step * slope) {
log.debug("Sufficient increase (Wolfe cond.), exiting backtrack on iter {}: score={}, bestScore={}", iteration, score, scoreAtStart);
if (score < scoreAtStart)
throw new IllegalStateException("Function did not increase: score = " + score + " < " + scoreAtStart + " = scoreAtStart");
return step;
} else // if value is infinite, i.e. we've jumped to unstable territory, then scale down jump
if (Double.isInfinite(score) || Double.isInfinite(score2) || Double.isNaN(score) || Double.isNaN(score2)) {
log.warn("Value is infinite after jump. oldStep={}. score={}, score2={}. Scaling back step size...", oldStep, score, score2);
tmpStep = .2 * step;
if (step < stepMin) {
//convergence on delta x
score = setScoreFor(parameters);
log.warn("EXITING BACKTRACK: Jump too small (step={} < stepMin={}). Exiting and using previous parameters. Value={}", step, stepMin, score);
return 0.0;
}
} else if (minObjectiveFunction) {
if (// first time through
step == 1.0)
tmpStep = -slope / (2.0 * (score - scoreAtStart - slope));
else {
rhs1 = score - scoreAtStart - step * slope;
rhs2 = score2 - scoreAtStart - step2 * slope;
if (step == step2)
throw new IllegalStateException("FAILURE: dividing by step-step2 which equals 0. step=" + step);
double stepSquared = step * step;
double step2Squared = step2 * step2;
a = (rhs1 / stepSquared - rhs2 / step2Squared) / (step - step2);
b = (-step2 * rhs1 / stepSquared + step * rhs2 / step2Squared) / (step - step2);
if (a == 0.0)
tmpStep = -slope / (2.0 * b);
else {
disc = b * b - 3.0 * a * slope;
if (disc < 0.0) {
tmpStep = 0.5 * step;
} else if (b <= 0.0)
tmpStep = (-b + FastMath.sqrt(disc)) / (3.0 * a);
else
tmpStep = -slope / (b + FastMath.sqrt(disc));
}
if (tmpStep > 0.5 * step)
// lambda <= 0.5 lambda_1
tmpStep = 0.5 * step;
}
} else {
if (// first time through
step == 1.0)
tmpStep = -slope / (2.0 * (scoreAtStart - score - slope));
else {
rhs1 = scoreAtStart - score - step * slope;
rhs2 = scoreAtStart - score2 - step2 * slope;
if (step == step2)
throw new IllegalStateException("FAILURE: dividing by step-step2 which equals 0. step=" + step);
double stepSquared = step * step;
double step2Squared = step2 * step2;
a = (rhs1 / stepSquared - rhs2 / step2Squared) / (step - step2);
b = (-step2 * rhs1 / stepSquared + step * rhs2 / step2Squared) / (step - step2);
if (a == 0.0)
tmpStep = -slope / (2.0 * b);
else {
disc = b * b - 3.0 * a * slope;
if (disc < 0.0) {
tmpStep = 0.5 * step;
} else if (b <= 0.0)
tmpStep = (-b + FastMath.sqrt(disc)) / (3.0 * a);
else
tmpStep = -slope / (b + FastMath.sqrt(disc));
}
if (tmpStep > 0.5 * step)
// lambda <= 0.5 lambda_1
tmpStep = 0.5 * step;
}
}
step2 = step;
score2 = score;
log.debug("tmpStep: {}", tmpStep);
// lambda >= .1*Lambda_1
step = Math.max(tmpStep, .1f * step);
}
if (minObjectiveFunction && bestScore < scoreAtStart) {
//Return best step size
log.debug("Exited line search after maxIterations termination condition; bestStepSize={}, bestScore={}, scoreAtStart={}", bestStepSize, bestScore, scoreAtStart);
return bestStepSize;
} else if (!minObjectiveFunction && bestScore > scoreAtStart) {
//Return best step size
log.debug("Exited line search after maxIterations termination condition; bestStepSize={}, bestScore={}, scoreAtStart={}", bestStepSize, bestScore, scoreAtStart);
return bestStepSize;
} else {
log.debug("Exited line search after maxIterations termination condition; score did not improve (bestScore={}, scoreAtStart={}). Resetting parameters", bestScore, scoreAtStart);
setScoreFor(parameters);
return 0.0;
}
}
use of org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction in project deeplearning4j by deeplearning4j.
the class BackTrackLineSearchTest method testSingleMaxLineSearch.
@Test
public void testSingleMaxLineSearch() throws Exception {
double score1, score2;
OutputLayer layer = getIrisLogisticLayerConfig(Activation.SOFTMAX, 100, LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD);
int nParams = layer.numParams();
layer.setBackpropGradientsViewArray(Nd4j.create(1, nParams));
layer.setInput(irisData.getFeatureMatrix());
layer.setLabels(irisData.getLabels());
layer.computeGradientAndScore();
score1 = layer.score();
BackTrackLineSearch lineSearch = new BackTrackLineSearch(layer, new NegativeDefaultStepFunction(), layer.getOptimizer());
double step = lineSearch.optimize(layer.params(), layer.gradient().gradient(), layer.gradient().gradient());
assertEquals(1.0, step, 1e-3);
}
use of org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction in project deeplearning4j by deeplearning4j.
the class BackTrackLineSearchTest method testMultMinLineSearch.
@Test
public void testMultMinLineSearch() throws Exception {
double score1, score2;
OutputLayer layer = getIrisLogisticLayerConfig(Activation.SOFTMAX, 100, LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD);
int nParams = layer.numParams();
layer.setBackpropGradientsViewArray(Nd4j.create(1, nParams));
layer.setInput(irisData.getFeatureMatrix());
layer.setLabels(irisData.getLabels());
layer.computeGradientAndScore();
score1 = layer.score();
INDArray origGradient = layer.gradient().gradient().dup();
NegativeDefaultStepFunction sf = new NegativeDefaultStepFunction();
BackTrackLineSearch lineSearch = new BackTrackLineSearch(layer, sf, layer.getOptimizer());
double step = lineSearch.optimize(layer.params(), layer.gradient().gradient(), layer.gradient().gradient());
INDArray currParams = layer.params();
sf.step(currParams, origGradient, step);
layer.setParams(currParams);
layer.computeGradientAndScore();
score2 = layer.score();
assertTrue("score1=" + score1 + ", score2=" + score2, score1 > score2);
}
Aggregations