use of org.eclipse.ceylon.langtools.tools.javac.code.Symbol in project ceylon by eclipse.
the class Attr method visitAssignop.
public void visitAssignop(JCAssignOp tree) {
// Attribute arguments.
Type owntype = attribTree(tree.lhs, env, varInfo);
Type operand = attribExpr(tree.rhs, env);
// Find operator.
Symbol operator = tree.operator = rs.resolveBinaryOperator(tree.pos(), tree.getTag().noAssignOp(), env, owntype, operand);
if (operator.kind == MTH && !owntype.isErroneous() && !operand.isErroneous()) {
chk.checkOperator(tree.pos(), (OperatorSymbol) operator, tree.getTag().noAssignOp(), owntype, operand);
chk.checkDivZero(tree.rhs.pos(), operator, operand);
chk.checkCastable(tree.rhs.pos(), operator.type.getReturnType(), owntype);
}
result = check(tree, owntype, VAL, resultInfo);
}
use of org.eclipse.ceylon.langtools.tools.javac.code.Symbol in project ceylon by eclipse.
the class Attr method visitIdent.
public void visitIdent(JCIdent tree) {
Symbol sym;
/*if(tree instanceof JCIndyIdent) {
sym = resolveIndyCall((JCIndyIdent) tree, pt().getParameterTypes());
} else*/
if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
// If we are looking for a method, the prototype `pt' will be a
// method type with the type of the call's arguments as parameters.
env.info.pendingResolutionPhase = null;
sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
} else if (tree.sym != null && tree.sym.kind != VAR) {
sym = tree.sym;
} else {
sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
}
tree.sym = sym;
// (1) Also find the environment current for the class where
// sym is defined (`symEnv').
// Only for pre-tiger versions (1.4 and earlier):
// (2) Also determine whether we access symbol out of an anonymous
// class in a this or super call. This is illegal for instance
// members since such classes don't carry a this$n link.
// (`noOuterThisPath').
Env<AttrContext> symEnv = env;
boolean noOuterThisPath = false;
if (// we are in an inner class
env.enclClass.sym.owner.kind != PCK && (sym.kind & (VAR | MTH | TYP)) != 0 && sym.owner.kind == TYP && tree.name != names._this && tree.name != names._super) {
// Find environment in which identifier is defined.
while (symEnv.outer != null && !sym.isMemberOf(symEnv.enclClass.sym, types)) {
if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
noOuterThisPath = !allowAnonOuterThis;
symEnv = symEnv.outer;
}
}
// If symbol is a variable, ...
if (sym.kind == VAR) {
VarSymbol v = (VarSymbol) sym;
// ..., evaluate its initializer, if it has one, and check for
// illegal forward reference.
checkInit(tree, env, v, false);
// that the variable is assignable in the current environment.
if (pkind() == VAR)
checkAssignable(tree.pos(), v, null, env);
}
// not accessed before the supertype constructor is called.
if ((symEnv.info.isSelfCall || noOuterThisPath) && (sym.kind & (VAR | MTH)) != 0 && sym.owner.kind == TYP && (sym.flags() & STATIC) == 0) {
chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
}
Env<AttrContext> env1 = env;
if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
// enclosing instance:
while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) env1 = env1.outer;
}
if (env.info.isSerializable) {
chk.checkElemAccessFromSerializableLambda(tree);
}
result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
}
use of org.eclipse.ceylon.langtools.tools.javac.code.Symbol in project ceylon by eclipse.
the class Attr method copyScope.
Scope copyScope(Scope sc) {
Scope newScope = new Scope(sc.owner);
List<Symbol> elemsList = List.nil();
while (sc != null) {
for (Scope.Entry e = sc.elems; e != null; e = e.sibling) {
elemsList = elemsList.prepend(e.sym);
}
sc = sc.next;
}
for (Symbol s : elemsList) {
newScope.enter(s);
}
return newScope;
}
use of org.eclipse.ceylon.langtools.tools.javac.code.Symbol in project ceylon by eclipse.
the class Attr method attribClassBody.
/**
* Finish the attribution of a class.
*/
private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
JCClassDecl tree = (JCClassDecl) env.tree;
Assert.check(c == tree.sym);
// Validate type parameters, supertype and interfaces.
attribStats(tree.typarams, env);
if (!c.isAnonymous()) {
// already checked if anonymous
chk.validate(tree.typarams, env);
chk.validate(tree.extending, env);
chk.validate(tree.implementing, env);
}
c.markAbstractIfNeeded(types);
// methods or unimplemented methods of an implemented interface.
if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
if (!relax)
chk.checkAllDefined(tree.pos(), c);
}
if ((c.flags() & Flags.ANNOTATION) != 0) {
if (tree.implementing.nonEmpty())
log.error(tree.implementing.head.pos(), "cant.extend.intf.annotation");
if (tree.typarams.nonEmpty())
log.error(tree.typarams.head.pos(), "intf.annotation.cant.have.type.params");
// If this annotation has a @Repeatable, validate
Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
if (repeatable != null) {
// get diagnostic position for error reporting
DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
Assert.checkNonNull(cbPos);
chk.validateRepeatable(c, repeatable, cbPos);
}
} else {
// Check that all extended classes and interfaces
// are compatible (i.e. no two define methods with same arguments
// yet different return types). (JLS 8.4.6.3)
chk.checkCompatibleSupertypes(tree.pos(), c.type);
if (allowDefaultMethods) {
chk.checkDefaultMethodClashes(tree.pos(), c.type);
}
}
// Check that class does not import the same parameterized interface
// with two different argument lists.
chk.checkClassBounds(tree.pos(), c.type);
tree.type = c.type;
for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) {
Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
}
// Check that a generic class doesn't extend Throwable
if (!sourceLanguage.isCeylon() && !c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
log.error(tree.extending.pos(), "generic.throwable");
// Check that all methods which implement some
// method conform to the method they implement.
chk.checkImplementations(tree);
// check that a resource implementing AutoCloseable cannot throw InterruptedException
checkAutoCloseable(tree.pos(), env, c.type);
for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
// Attribute declaration
attribStat(l.head, env);
// Make an exception for static constants.
if (c.owner.kind != PCK && ((c.flags() & STATIC) == 0 || c.name == names.empty) && (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
Symbol sym = null;
if (l.head.hasTag(VARDEF))
sym = ((JCVariableDecl) l.head).sym;
if (sym == null || sym.kind != VAR || ((VarSymbol) sym).getConstValue() == null)
log.error(l.head.pos(), "icls.cant.have.static.decl", c);
}
}
// Check for cycles among non-initial constructors.
chk.checkCyclicConstructors(tree);
// Check for cycles among annotation elements.
chk.checkNonCyclicElements(tree);
// Check for proper use of serialVersionUID
if (env.info.lint.isEnabled(LintCategory.SERIAL) && isSerializable(c.type) && (c.flags() & Flags.ENUM) == 0 && checkForSerial(c)) {
checkSerialVersionUID(tree, c);
}
if (allowTypeAnnos) {
// Correctly organize the postions of the type annotations
typeAnnotations.organizeTypeAnnotationsBodies(tree);
// Check type annotations applicability rules
validateTypeAnnotations(tree, false);
}
}
use of org.eclipse.ceylon.langtools.tools.javac.code.Symbol in project ceylon by eclipse.
the class Attr method visitNewClass.
public void visitNewClass(final JCNewClass tree) {
Type owntype = types.createErrorType(tree.type);
// The local environment of a class creation is
// a new environment nested in the current one.
Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
// The anonymous inner class definition of the new expression,
// if one is defined by it.
JCClassDecl cdef = tree.def;
// If enclosing class is given, attribute it, and
// complete class name to be fully qualified
// Class field following new
JCExpression clazz = tree.clazz;
// Identifier in class field
JCExpression clazzid;
// Annotated type enclosing clazzid
JCAnnotatedType annoclazzid;
annoclazzid = null;
if (clazz.hasTag(TYPEAPPLY)) {
clazzid = ((JCTypeApply) clazz).clazz;
if (clazzid.hasTag(ANNOTATED_TYPE)) {
annoclazzid = (JCAnnotatedType) clazzid;
clazzid = annoclazzid.underlyingType;
}
} else {
if (clazz.hasTag(ANNOTATED_TYPE)) {
annoclazzid = (JCAnnotatedType) clazz;
clazzid = annoclazzid.underlyingType;
} else {
clazzid = clazz;
}
}
// The same in fully qualified form
JCExpression clazzid1 = clazzid;
if (tree.encl != null) {
// We are seeing a qualified new, of the form
// <expr>.new C <...> (...) ...
// In this case, we let clazz stand for the name of the
// allocated class C prefixed with the type of the qualifier
// expression, so that we can
// resolve it with standard techniques later. I.e., if
// <expr> has type T, then <expr>.new C <...> (...)
// yields a clazz T.C.
Type encltype = chk.checkRefType(tree.encl.pos(), attribExpr(tree.encl, env));
// TODO 308: in <expr>.new C, do we also want to add the type annotations
// from expr to the combined type, or not? Yes, do this.
clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), ((JCIdent) clazzid).name);
EndPosTable endPosTable = this.env.toplevel.endPositions;
endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
if (clazz.hasTag(ANNOTATED_TYPE)) {
JCAnnotatedType annoType = (JCAnnotatedType) clazz;
List<JCAnnotation> annos = annoType.annotations;
if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
clazzid1 = make.at(tree.pos).TypeApply(clazzid1, ((JCTypeApply) clazz).arguments);
}
clazzid1 = make.at(tree.pos).AnnotatedType(annos, clazzid1);
} else if (clazz.hasTag(TYPEAPPLY)) {
clazzid1 = make.at(tree.pos).TypeApply(clazzid1, ((JCTypeApply) clazz).arguments);
}
clazz = clazzid1;
}
// Attribute clazz expression and store
// symbol + type back into the attributed tree.
Type clazztype = TreeInfo.isEnumInit(env.tree) ? attribIdentAsEnumType(env, (JCIdent) clazz) : attribType(clazz, env);
clazztype = chk.checkDiamond(tree, clazztype);
chk.validate(clazz, localEnv);
if (tree.encl != null) {
// We have to work in this case to store
// symbol + type back into the attributed tree.
tree.clazz.type = clazztype;
TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
clazzid.type = ((JCIdent) clazzid).sym.type;
if (annoclazzid != null) {
annoclazzid.type = clazzid.type;
}
if (!clazztype.isErroneous()) {
if (cdef != null && clazztype.tsym.isInterface()) {
log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
} else if (clazztype.tsym.isStatic()) {
log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
}
}
} else if (!clazztype.tsym.isInterface() && clazztype.getEnclosingType().hasTag(CLASS)) {
// Check for the existence of an apropos outer instance
rs.resolveImplicitThis(tree.pos(), env, clazztype);
}
// Attribute constructor arguments.
ListBuffer<Type> argtypesBuf = new ListBuffer<>();
int pkind = attribArgs(VAL, tree.args, localEnv, argtypesBuf);
List<Type> argtypes = argtypesBuf.toList();
List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
// If we have made no mistakes in the class type...
if (clazztype.hasTag(CLASS)) {
// Enums may not be instantiated except implicitly
if (allowEnums && (clazztype.tsym.flags_field & Flags.ENUM) != 0 && (!env.tree.hasTag(VARDEF) || (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || ((JCVariableDecl) env.tree).init != tree))
log.error(tree.pos(), "enum.cant.be.instantiated");
// Check that class is not abstract
if (cdef == null && (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
log.error(tree.pos(), "abstract.cant.be.instantiated", clazztype.tsym);
} else if (cdef != null && clazztype.tsym.isInterface()) {
// anonymous classes implementing an interface
if (!argtypes.isEmpty())
log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
if (!typeargtypes.isEmpty())
log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
// Error recovery: pretend no arguments were supplied.
argtypes = List.nil();
typeargtypes = List.nil();
} else if (TreeInfo.isDiamond(tree)) {
ClassType site = new ClassType(clazztype.getEnclosingType(), clazztype.tsym.type.getTypeArguments(), clazztype.tsym);
Env<AttrContext> diamondEnv = localEnv.dup(tree);
diamondEnv.info.selectSuper = cdef != null;
diamondEnv.info.pendingResolutionPhase = null;
// if the type of the instance creation expression is a class type
// apply method resolution inference (JLS 15.12.2.7). The return type
// of the resolved constructor will be a partially instantiated type
Symbol constructor = rs.resolveDiamond(tree.pos(), diamondEnv, site, argtypes, typeargtypes);
tree.constructor = constructor.baseSymbol();
final TypeSymbol csym = clazztype.tsym;
ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
@Override
public void report(DiagnosticPosition _unused, JCDiagnostic details) {
enclosingContext.report(tree.clazz, diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
}
});
Type constructorType = tree.constructorType = types.createErrorType(clazztype);
constructorType = checkId(noCheckTree, site, constructor, diamondEnv, diamondResult);
tree.clazz.type = types.createErrorType(clazztype);
if (!constructorType.isErroneous()) {
tree.clazz.type = clazztype = constructorType.getReturnType();
tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
}
clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
} else // Resolve the called constructor under the assumption
// that we are referring to a superclass instance of the
// current instance (JLS ???).
{
// the following code alters some of the fields in the current
// AttrContext - hence, the current context must be dup'ed in
// order to avoid downstream failures
Env<AttrContext> rsEnv = localEnv.dup(tree);
rsEnv.info.selectSuper = cdef != null;
rsEnv.info.pendingResolutionPhase = null;
tree.constructor = rs.resolveConstructor(tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
if (cdef == null) {
// do not check twice!
tree.constructorType = checkId(noCheckTree, clazztype, tree.constructor, rsEnv, new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
if (rsEnv.info.lastResolveVarargs())
Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
}
if (cdef == null && !clazztype.isErroneous() && clazztype.getTypeArguments().nonEmpty() && findDiamonds) {
findDiamond(localEnv, tree, clazztype);
}
}
if (cdef != null) {
// }
if (Resolve.isStatic(env))
cdef.mods.flags |= STATIC;
if (clazztype.tsym.isInterface()) {
cdef.implementing = List.of(clazz);
} else {
cdef.extending = clazz;
}
if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && isSerializable(clazztype)) {
localEnv.info.isSerializable = true;
}
attribStat(cdef, localEnv);
checkLambdaCandidate(tree, cdef.sym, clazztype);
// and delete it from the new expression
if (tree.encl != null && !clazztype.tsym.isInterface()) {
tree.args = tree.args.prepend(makeNullCheck(tree.encl));
argtypes = argtypes.prepend(tree.encl.type);
tree.encl = null;
}
// Reassign clazztype and recompute constructor.
clazztype = cdef.sym.type;
Symbol sym = tree.constructor = rs.resolveConstructor(tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
Assert.check(sym.kind < AMBIGUOUS);
tree.constructor = sym;
tree.constructorType = checkId(noCheckTree, clazztype, tree.constructor, localEnv, new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
}
if (tree.constructor != null && tree.constructor.kind == MTH)
owntype = clazztype;
}
result = check(tree, owntype, VAL, resultInfo);
InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
// we need to wait for inference to finish and then replace inference vars in the constructor type
inferenceContext.addFreeTypeListener(List.of(tree.constructorType), new FreeTypeListener() {
@Override
public void typesInferred(InferenceContext instantiatedContext) {
tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
}
});
}
chk.validate(tree.typeargs, localEnv);
}
Aggregations