use of org.graalvm.compiler.graph.spi.SimplifierTool in project graal by oracle.
the class IntegerSwitchNode method tryOptimizeEnumSwitch.
/**
* For switch statements on enum values, the Java compiler has to generate complicated code:
* because {@link Enum#ordinal()} can change when recompiling an enum, it cannot be used
* directly as the value that is switched on. An intermediate int[] array, which is initialized
* once at run time based on the actual {@link Enum#ordinal()} values, is used.
*
* The {@link ConstantFieldProvider} of Graal already detects the int[] arrays and marks them as
* {@link ConstantNode#isDefaultStable() stable}, i.e., the array elements are constant. The
* code in this method detects array loads from such a stable array and re-wires the switch to
* use the keys from the array elements, so that the array load is unnecessary.
*/
private boolean tryOptimizeEnumSwitch(SimplifierTool tool) {
if (!(value() instanceof LoadIndexedNode)) {
/* Not the switch pattern we are looking for. */
return false;
}
LoadIndexedNode loadIndexed = (LoadIndexedNode) value();
if (loadIndexed.usages().count() > 1) {
/*
* The array load is necessary for other reasons too, so there is no benefit optimizing
* the switch.
*/
return false;
}
assert loadIndexed.usages().first() == this;
ValueNode newValue = loadIndexed.index();
JavaConstant arrayConstant = loadIndexed.array().asJavaConstant();
if (arrayConstant == null || ((ConstantNode) loadIndexed.array()).getStableDimension() != 1 || !((ConstantNode) loadIndexed.array()).isDefaultStable()) {
/*
* The array is a constant that we can optimize. We require the array elements to be
* constant too, since we put them as literal constants into the switch keys.
*/
return false;
}
Integer optionalArrayLength = tool.getConstantReflection().readArrayLength(arrayConstant);
if (optionalArrayLength == null) {
/* Loading a constant value can be denied by the VM. */
return false;
}
int arrayLength = optionalArrayLength;
Map<Integer, List<Integer>> reverseArrayMapping = new HashMap<>();
for (int i = 0; i < arrayLength; i++) {
JavaConstant elementConstant = tool.getConstantReflection().readArrayElement(arrayConstant, i);
if (elementConstant == null || elementConstant.getJavaKind() != JavaKind.Int) {
/* Loading a constant value can be denied by the VM. */
return false;
}
int element = elementConstant.asInt();
/*
* The value loaded from the array is the old switch key, the index into the array is
* the new switch key. We build a mapping from the old switch key to new keys.
*/
reverseArrayMapping.computeIfAbsent(element, e -> new ArrayList<>()).add(i);
}
/* Build high-level representation of new switch keys. */
List<KeyData> newKeyDatas = new ArrayList<>(arrayLength);
ArrayList<AbstractBeginNode> newSuccessors = new ArrayList<>(blockSuccessorCount());
for (int i = 0; i < keys.length; i++) {
List<Integer> newKeys = reverseArrayMapping.get(keys[i]);
if (newKeys == null || newKeys.size() == 0) {
/* The switch case is unreachable, we can ignore it. */
continue;
}
/*
* We do not have detailed profiling information about the individual new keys, so we
* have to assume they split the probability of the old key.
*/
double newKeyProbability = keyProbabilities[i] / newKeys.size();
int newKeySuccessor = addNewSuccessor(keySuccessor(i), newSuccessors);
for (int newKey : newKeys) {
newKeyDatas.add(new KeyData(newKey, newKeyProbability, newKeySuccessor));
}
}
int newDefaultSuccessor = addNewSuccessor(defaultSuccessor(), newSuccessors);
double newDefaultProbability = keyProbabilities[keyProbabilities.length - 1];
/*
* We remove the array load, but we still need to preserve exception semantics by keeping
* the bounds check. Fortunately the array length is a constant.
*/
LogicNode boundsCheck = graph().unique(new IntegerBelowNode(newValue, ConstantNode.forInt(arrayLength, graph())));
graph().addBeforeFixed(this, graph().add(new FixedGuardNode(boundsCheck, DeoptimizationReason.BoundsCheckException, DeoptimizationAction.InvalidateReprofile)));
/*
* Build the low-level representation of the new switch keys and replace ourself with a new
* node.
*/
doReplace(newValue, newKeyDatas, newSuccessors, newDefaultSuccessor, newDefaultProbability);
/* The array load is now unnecessary. */
assert loadIndexed.hasNoUsages();
GraphUtil.removeFixedWithUnusedInputs(loadIndexed);
return true;
}
use of org.graalvm.compiler.graph.spi.SimplifierTool in project graal by oracle.
the class ConvertDeoptimizeToGuardPhase method propagateFixed.
@SuppressWarnings("try")
private void propagateFixed(FixedNode from, StaticDeoptimizingNode deopt, LoweringProvider loweringProvider) {
Node current = from;
while (current != null) {
if (GraalOptions.GuardPriorities.getValue(from.getOptions()) && current instanceof FixedGuardNode) {
FixedGuardNode otherGuard = (FixedGuardNode) current;
if (otherGuard.computePriority().isHigherPriorityThan(deopt.computePriority())) {
moveAsDeoptAfter(otherGuard, deopt);
return;
}
} else if (current instanceof AbstractBeginNode) {
if (current instanceof AbstractMergeNode) {
AbstractMergeNode mergeNode = (AbstractMergeNode) current;
FixedNode next = mergeNode.next();
while (mergeNode.isAlive()) {
AbstractEndNode end = mergeNode.forwardEnds().first();
propagateFixed(end, deopt, loweringProvider);
}
assert next.isAlive();
propagateFixed(next, deopt, loweringProvider);
return;
} else if (current.predecessor() instanceof IfNode) {
IfNode ifNode = (IfNode) current.predecessor();
// Prioritize the source position of the IfNode
try (DebugCloseable closable = ifNode.withNodeSourcePosition()) {
StructuredGraph graph = ifNode.graph();
LogicNode conditionNode = ifNode.condition();
boolean negateGuardCondition = current == ifNode.trueSuccessor();
FixedGuardNode guard = graph.add(new FixedGuardNode(conditionNode, deopt.getReason(), deopt.getAction(), deopt.getSpeculation(), negateGuardCondition));
FixedWithNextNode pred = (FixedWithNextNode) ifNode.predecessor();
AbstractBeginNode survivingSuccessor;
if (negateGuardCondition) {
survivingSuccessor = ifNode.falseSuccessor();
} else {
survivingSuccessor = ifNode.trueSuccessor();
}
graph.removeSplitPropagate(ifNode, survivingSuccessor);
Node newGuard = guard;
if (survivingSuccessor instanceof LoopExitNode) {
newGuard = ProxyNode.forGuard(guard, (LoopExitNode) survivingSuccessor, graph);
}
survivingSuccessor.replaceAtUsages(InputType.Guard, newGuard);
graph.getDebug().log("Converting deopt on %-5s branch of %s to guard for remaining branch %s.", negateGuardCondition, ifNode, survivingSuccessor);
FixedNode next = pred.next();
pred.setNext(guard);
guard.setNext(next);
SimplifierTool simplifierTool = GraphUtil.getDefaultSimplifier(null, null, null, false, graph.getAssumptions(), graph.getOptions(), loweringProvider);
survivingSuccessor.simplify(simplifierTool);
return;
}
} else if (current.predecessor() == null || current.predecessor() instanceof ControlSplitNode) {
assert current.predecessor() != null || (current instanceof StartNode && current == ((AbstractBeginNode) current).graph().start());
moveAsDeoptAfter((AbstractBeginNode) current, deopt);
return;
}
}
current = current.predecessor();
}
}
Aggregations