use of org.h2.result.SortOrder in project h2database by h2database.
the class BaseIndex method getCostRangeIndex.
/**
* Calculate the cost for the given mask as if this index was a typical
* b-tree range index. This is the estimated cost required to search one
* row, and then iterate over the given number of rows.
*
* @param masks the IndexCondition search masks, one for each column in the
* table
* @param rowCount the number of rows in the index
* @param filters all joined table filters
* @param filter the current table filter index
* @param sortOrder the sort order
* @param isScanIndex whether this is a "table scan" index
* @param allColumnsSet the set of all columns
* @return the estimated cost
*/
protected final long getCostRangeIndex(int[] masks, long rowCount, TableFilter[] filters, int filter, SortOrder sortOrder, boolean isScanIndex, HashSet<Column> allColumnsSet) {
rowCount += Constants.COST_ROW_OFFSET;
int totalSelectivity = 0;
long rowsCost = rowCount;
if (masks != null) {
for (int i = 0, len = columns.length; i < len; i++) {
Column column = columns[i];
int index = column.getColumnId();
int mask = masks[index];
if ((mask & IndexCondition.EQUALITY) == IndexCondition.EQUALITY) {
if (i == columns.length - 1 && getIndexType().isUnique()) {
rowsCost = 3;
break;
}
totalSelectivity = 100 - ((100 - totalSelectivity) * (100 - column.getSelectivity()) / 100);
long distinctRows = rowCount * totalSelectivity / 100;
if (distinctRows <= 0) {
distinctRows = 1;
}
rowsCost = 2 + Math.max(rowCount / distinctRows, 1);
} else if ((mask & IndexCondition.RANGE) == IndexCondition.RANGE) {
rowsCost = 2 + rowCount / 4;
break;
} else if ((mask & IndexCondition.START) == IndexCondition.START) {
rowsCost = 2 + rowCount / 3;
break;
} else if ((mask & IndexCondition.END) == IndexCondition.END) {
rowsCost = rowCount / 3;
break;
} else {
break;
}
}
}
// If the ORDER BY clause matches the ordering of this index,
// it will be cheaper than another index, so adjust the cost
// accordingly.
long sortingCost = 0;
if (sortOrder != null) {
sortingCost = 100 + rowCount / 10;
}
if (sortOrder != null && !isScanIndex) {
boolean sortOrderMatches = true;
int coveringCount = 0;
int[] sortTypes = sortOrder.getSortTypes();
TableFilter tableFilter = filters == null ? null : filters[filter];
for (int i = 0, len = sortTypes.length; i < len; i++) {
if (i >= indexColumns.length) {
// more of the order by columns.
break;
}
Column col = sortOrder.getColumn(i, tableFilter);
if (col == null) {
sortOrderMatches = false;
break;
}
IndexColumn indexCol = indexColumns[i];
if (!col.equals(indexCol.column)) {
sortOrderMatches = false;
break;
}
int sortType = sortTypes[i];
if (sortType != indexCol.sortType) {
sortOrderMatches = false;
break;
}
coveringCount++;
}
if (sortOrderMatches) {
// "coveringCount" makes sure that when we have two
// or more covering indexes, we choose the one
// that covers more.
sortingCost = 100 - coveringCount;
}
}
// If we have two indexes with the same cost, and one of the indexes can
// satisfy the query without needing to read from the primary table
// (scan index), make that one slightly lower cost.
boolean needsToReadFromScanIndex = true;
if (!isScanIndex && allColumnsSet != null && !allColumnsSet.isEmpty()) {
boolean foundAllColumnsWeNeed = true;
for (Column c : allColumnsSet) {
if (c.getTable() == getTable()) {
boolean found = false;
for (Column c2 : columns) {
if (c == c2) {
found = true;
break;
}
}
if (!found) {
foundAllColumnsWeNeed = false;
break;
}
}
}
if (foundAllColumnsWeNeed) {
needsToReadFromScanIndex = false;
}
}
long rc;
if (isScanIndex) {
rc = rowsCost + sortingCost + 20;
} else if (needsToReadFromScanIndex) {
rc = rowsCost + rowsCost + sortingCost + 20;
} else {
// The (20-x) calculation makes sure that when we pick a covering
// index, we pick the covering index that has the smallest number of
// columns (the more columns we have in index - the higher cost).
// This is faster because a smaller index will fit into fewer data
// blocks.
rc = rowsCost + sortingCost + columns.length;
}
return rc;
}
use of org.h2.result.SortOrder in project h2database by h2database.
the class HashIndex method getCost.
@Override
public double getCost(Session session, int[] masks, TableFilter[] filters, int filter, SortOrder sortOrder, HashSet<Column> allColumnsSet) {
for (Column column : columns) {
int index = column.getColumnId();
int mask = masks[index];
if ((mask & IndexCondition.EQUALITY) != IndexCondition.EQUALITY) {
return Long.MAX_VALUE;
}
}
return 2;
}
use of org.h2.result.SortOrder in project h2database by h2database.
the class Aggregate method initOrder.
private SortOrder initOrder(Session session) {
int size = orderByList.size();
int[] index = new int[size];
int[] sortType = new int[size];
for (int i = 0; i < size; i++) {
SelectOrderBy o = orderByList.get(i);
index[i] = i + 1;
int order = o.descending ? SortOrder.DESCENDING : SortOrder.ASCENDING;
sortType[i] = order;
}
return new SortOrder(session.getDatabase(), index, sortType, null);
}
use of org.h2.result.SortOrder in project h2database by h2database.
the class TableFilter method getBestPlanItem.
/**
* Get the best plan item (index, cost) to use use for the current join
* order.
*
* @param s the session
* @param filters all joined table filters
* @param filter the current table filter index
* @param allColumnsSet the set of all columns
* @return the best plan item
*/
public PlanItem getBestPlanItem(Session s, TableFilter[] filters, int filter, HashSet<Column> allColumnsSet) {
PlanItem item1 = null;
SortOrder sortOrder = null;
if (select != null) {
sortOrder = select.getSortOrder();
}
if (indexConditions.isEmpty()) {
item1 = new PlanItem();
item1.setIndex(table.getScanIndex(s, null, filters, filter, sortOrder, allColumnsSet));
item1.cost = item1.getIndex().getCost(s, null, filters, filter, sortOrder, allColumnsSet);
}
int len = table.getColumns().length;
int[] masks = new int[len];
for (IndexCondition condition : indexConditions) {
if (condition.isEvaluatable()) {
if (condition.isAlwaysFalse()) {
masks = null;
break;
}
int id = condition.getColumn().getColumnId();
if (id >= 0) {
masks[id] |= condition.getMask(indexConditions);
}
}
}
PlanItem item = table.getBestPlanItem(s, masks, filters, filter, sortOrder, allColumnsSet);
item.setMasks(masks);
// The more index conditions, the earlier the table.
// This is to ensure joins without indexes run quickly:
// x (x.a=10); y (x.b=y.b) - see issue 113
item.cost -= item.cost * indexConditions.size() / 100 / (filter + 1);
if (item1 != null && item1.cost < item.cost) {
item = item1;
}
if (nestedJoin != null) {
setEvaluatable(true);
item.setNestedJoinPlan(nestedJoin.getBestPlanItem(s, filters, filter, allColumnsSet));
// TODO optimizer: calculate cost of a join: should use separate
// expected row number and lookup cost
item.cost += item.cost * item.getNestedJoinPlan().cost;
}
if (join != null) {
setEvaluatable(true);
do {
filter++;
} while (filters[filter] != join);
item.setJoinPlan(join.getBestPlanItem(s, filters, filter, allColumnsSet));
// TODO optimizer: calculate cost of a join: should use separate
// expected row number and lookup cost
item.cost += item.cost * item.getJoinPlan().cost;
}
return item;
}
use of org.h2.result.SortOrder in project ignite by apache.
the class GridSqlQueryParser method processSortOrder.
/**
* @param sortOrder Sort order.
* @param qry Query.
*/
private void processSortOrder(SortOrder sortOrder, GridSqlQuery qry) {
if (sortOrder == null)
return;
int[] indexes = sortOrder.getQueryColumnIndexes();
int[] sortTypes = sortOrder.getSortTypes();
for (int i = 0; i < indexes.length; i++) {
int colIdx = indexes[i];
int type = sortTypes[i];
qry.addSort(new GridSqlSortColumn(colIdx, (type & SortOrder.DESCENDING) == 0, (type & SortOrder.NULLS_FIRST) != 0, (type & SortOrder.NULLS_LAST) != 0));
}
}
Aggregations