use of org.hipparchus.geometry.euclidean.threed.FieldVector3D in project Orekit by CS-SI.
the class EcksteinHechlerPropagator method toCartesian.
/**
* Convert circular parameters <em>with derivatives</em> to Cartesian coordinates.
* @param date date of the orbital parameters
* @param parameters circular parameters (a, ex, ey, i, raan, alphaM)
* @return Cartesian coordinates consistent with values and derivatives
*/
private TimeStampedPVCoordinates toCartesian(final AbsoluteDate date, final DerivativeStructure[] parameters) {
// evaluate coordinates in the orbit canonical reference frame
final DerivativeStructure cosOmega = parameters[4].cos();
final DerivativeStructure sinOmega = parameters[4].sin();
final DerivativeStructure cosI = parameters[3].cos();
final DerivativeStructure sinI = parameters[3].sin();
final DerivativeStructure alphaE = meanToEccentric(parameters[5], parameters[1], parameters[2]);
final DerivativeStructure cosAE = alphaE.cos();
final DerivativeStructure sinAE = alphaE.sin();
final DerivativeStructure ex2 = parameters[1].multiply(parameters[1]);
final DerivativeStructure ey2 = parameters[2].multiply(parameters[2]);
final DerivativeStructure exy = parameters[1].multiply(parameters[2]);
final DerivativeStructure q = ex2.add(ey2).subtract(1).negate().sqrt();
final DerivativeStructure beta = q.add(1).reciprocal();
final DerivativeStructure bx2 = beta.multiply(ex2);
final DerivativeStructure by2 = beta.multiply(ey2);
final DerivativeStructure bxy = beta.multiply(exy);
final DerivativeStructure u = bxy.multiply(sinAE).subtract(parameters[1].add(by2.subtract(1).multiply(cosAE)));
final DerivativeStructure v = bxy.multiply(cosAE).subtract(parameters[2].add(bx2.subtract(1).multiply(sinAE)));
final DerivativeStructure x = parameters[0].multiply(u);
final DerivativeStructure y = parameters[0].multiply(v);
// canonical orbit reference frame
final FieldVector3D<DerivativeStructure> p = new FieldVector3D<>(x.multiply(cosOmega).subtract(y.multiply(cosI.multiply(sinOmega))), x.multiply(sinOmega).add(y.multiply(cosI.multiply(cosOmega))), y.multiply(sinI));
// dispatch derivatives
final Vector3D p0 = new Vector3D(p.getX().getValue(), p.getY().getValue(), p.getZ().getValue());
final Vector3D p1 = new Vector3D(p.getX().getPartialDerivative(1), p.getY().getPartialDerivative(1), p.getZ().getPartialDerivative(1));
final Vector3D p2 = new Vector3D(p.getX().getPartialDerivative(2), p.getY().getPartialDerivative(2), p.getZ().getPartialDerivative(2));
return new TimeStampedPVCoordinates(date, p0, p1, p2);
}
use of org.hipparchus.geometry.euclidean.threed.FieldVector3D in project Orekit by CS-SI.
the class GPSPropagator method propagateInEcef.
/**
* Gets the PVCoordinates of the GPS SV in {@link #getECEF() ECEF frame}.
*
* <p>The algorithm is defined at Table 20-IV from IS-GPS-200 document,
* with automatic differentiation added to compute velocity and
* acceleration.</p>
*
* @param date the computation date
* @return the GPS SV PVCoordinates in {@link #getECEF() ECEF frame}
*/
public PVCoordinates propagateInEcef(final AbsoluteDate date) {
// Duration from GPS ephemeris Reference date
final DerivativeStructure tk = factory.variable(0, getTk(date));
// Mean anomaly
final DerivativeStructure mk = tk.multiply(gpsOrbit.getMeanMotion()).add(gpsOrbit.getM0());
// Eccentric Anomaly
final DerivativeStructure ek = getEccentricAnomaly(mk);
// True Anomaly
final DerivativeStructure vk = getTrueAnomaly(ek);
// Argument of Latitude
final DerivativeStructure phik = vk.add(gpsOrbit.getPa());
final DerivativeStructure twoPhik = phik.multiply(2);
final DerivativeStructure c2phi = twoPhik.cos();
final DerivativeStructure s2phi = twoPhik.sin();
// Argument of Latitude Correction
final DerivativeStructure dphik = c2phi.multiply(gpsOrbit.getCuc()).add(s2phi.multiply(gpsOrbit.getCus()));
// Radius Correction
final DerivativeStructure drk = c2phi.multiply(gpsOrbit.getCrc()).add(s2phi.multiply(gpsOrbit.getCrs()));
// Inclination Correction
final DerivativeStructure dik = c2phi.multiply(gpsOrbit.getCic()).add(s2phi.multiply(gpsOrbit.getCis()));
// Corrected Argument of Latitude
final DerivativeStructure uk = phik.add(dphik);
// Corrected Radius
final DerivativeStructure rk = ek.cos().multiply(-gpsOrbit.getE()).add(1).multiply(gpsOrbit.getSma()).add(drk);
// Corrected Inclination
final DerivativeStructure ik = tk.multiply(gpsOrbit.getIDot()).add(gpsOrbit.getI0()).add(dik);
final DerivativeStructure cik = ik.cos();
// Positions in orbital plane
final DerivativeStructure xk = uk.cos().multiply(rk);
final DerivativeStructure yk = uk.sin().multiply(rk);
// Corrected longitude of ascending node
final DerivativeStructure omk = tk.multiply(gpsOrbit.getOmegaDot() - GPS_AV).add(gpsOrbit.getOmega0() - GPS_AV * gpsOrbit.getTime());
final DerivativeStructure comk = omk.cos();
final DerivativeStructure somk = omk.sin();
// returns the Earth-fixed coordinates
final FieldVector3D<DerivativeStructure> positionwithDerivatives = new FieldVector3D<>(xk.multiply(comk).subtract(yk.multiply(somk).multiply(cik)), xk.multiply(somk).add(yk.multiply(comk).multiply(cik)), yk.multiply(ik.sin()));
return new PVCoordinates(positionwithDerivatives);
}
use of org.hipparchus.geometry.euclidean.threed.FieldVector3D in project Orekit by CS-SI.
the class CartesianOrbit method getPositionDS.
/**
* Get position with derivatives.
* @return position with derivatives
*/
private FieldVector3D<DerivativeStructure> getPositionDS() {
final Vector3D p = getPVCoordinates().getPosition();
final Vector3D v = getPVCoordinates().getVelocity();
return new FieldVector3D<>(FACTORY.build(p.getX(), v.getX()), FACTORY.build(p.getY(), v.getY()), FACTORY.build(p.getZ(), v.getZ()));
}
use of org.hipparchus.geometry.euclidean.threed.FieldVector3D in project Orekit by CS-SI.
the class BodyCenterPointingTest method doTestQDot.
private <T extends RealFieldElement<T>> void doTestQDot(final Field<T> field) throws OrekitException {
final double ehMu = 3.9860047e14;
final double ae = 6.378137e6;
final double c20 = -1.08263e-3;
final double c30 = 2.54e-6;
final double c40 = 1.62e-6;
final double c50 = 2.3e-7;
final double c60 = -5.5e-7;
// Satellite position as circular parameters
T zero = field.getZero();
final T a = zero.add(7178000.0);
final T e = zero.add(7e-5);
final T i = zero.add(FastMath.toRadians(50.));
final T pa = zero.add(FastMath.toRadians(45.));
final T raan = zero.add(FastMath.toRadians(270.));
final T m = zero.add(FastMath.toRadians(5.3 - 270));
// Computation date
FieldAbsoluteDate<T> date_comp = new FieldAbsoluteDate<>(field, new DateComponents(2008, 04, 07), TimeComponents.H00, TimeScalesFactory.getUTC());
// Orbit
FieldKeplerianOrbit<T> circ = new FieldKeplerianOrbit<>(a, e, i, pa, raan, m, PositionAngle.MEAN, FramesFactory.getEME2000(), date_comp, ehMu);
// WGS84 Earth model
OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
// Earth center pointing attitude provider
BodyCenterPointing earthCenterAttitudeLaw = new BodyCenterPointing(circ.getFrame(), earth);
final FieldAbsoluteDate<T> date = FieldAbsoluteDate.getJ2000Epoch(field).shiftedBy(584.);
final FieldVector3D<T> position = new FieldVector3D<>(zero.add(3220103.), zero.add(69623.), zero.add(6449822.));
final FieldVector3D<T> velocity = new FieldVector3D<>(zero.add(6414.7), zero.add(-2006.), zero.add(-3180.));
final FieldCircularOrbit<T> initialOrbit = new FieldCircularOrbit<>(new FieldPVCoordinates<>(position, velocity), FramesFactory.getEME2000(), date, ehMu);
FieldEcksteinHechlerPropagator<T> propagator = new FieldEcksteinHechlerPropagator<>(initialOrbit, ae, ehMu, c20, c30, c40, c50, c60);
propagator.setAttitudeProvider(earthCenterAttitudeLaw);
List<WeightedObservedPoint> w0 = new ArrayList<WeightedObservedPoint>();
List<WeightedObservedPoint> w1 = new ArrayList<WeightedObservedPoint>();
List<WeightedObservedPoint> w2 = new ArrayList<WeightedObservedPoint>();
List<WeightedObservedPoint> w3 = new ArrayList<WeightedObservedPoint>();
for (double dt = -1; dt < 1; dt += 0.01) {
FieldRotation<T> rP = propagator.propagate(date.shiftedBy(dt)).getAttitude().getRotation();
w0.add(new WeightedObservedPoint(1, dt, rP.getQ0().getReal()));
w1.add(new WeightedObservedPoint(1, dt, rP.getQ1().getReal()));
w2.add(new WeightedObservedPoint(1, dt, rP.getQ2().getReal()));
w3.add(new WeightedObservedPoint(1, dt, rP.getQ3().getReal()));
}
double q0DotRef = PolynomialCurveFitter.create(2).fit(w0)[1];
double q1DotRef = PolynomialCurveFitter.create(2).fit(w1)[1];
double q2DotRef = PolynomialCurveFitter.create(2).fit(w2)[1];
double q3DotRef = PolynomialCurveFitter.create(2).fit(w3)[1];
FieldAttitude<T> a0 = propagator.propagate(date).getAttitude();
T q0 = a0.getRotation().getQ0();
T q1 = a0.getRotation().getQ1();
T q2 = a0.getRotation().getQ2();
T q3 = a0.getRotation().getQ3();
T oX = a0.getSpin().getX();
T oY = a0.getSpin().getY();
T oZ = a0.getSpin().getZ();
// first time-derivatives of the quaternion
double q0Dot = 0.5 * MathArrays.linearCombination(-q1.getReal(), oX.getReal(), -q2.getReal(), oY.getReal(), -q3.getReal(), oZ.getReal());
double q1Dot = 0.5 * MathArrays.linearCombination(q0.getReal(), oX.getReal(), -q3.getReal(), oY.getReal(), q2.getReal(), oZ.getReal());
double q2Dot = 0.5 * MathArrays.linearCombination(q3.getReal(), oX.getReal(), q0.getReal(), oY.getReal(), -q1.getReal(), oZ.getReal());
double q3Dot = 0.5 * MathArrays.linearCombination(-q2.getReal(), oX.getReal(), q1.getReal(), oY.getReal(), q0.getReal(), oZ.getReal());
Assert.assertEquals(q0DotRef, q0Dot, 5.0e-9);
Assert.assertEquals(q1DotRef, q1Dot, 5.0e-9);
Assert.assertEquals(q2DotRef, q2Dot, 5.0e-9);
Assert.assertEquals(q3DotRef, q3Dot, 5.0e-9);
}
use of org.hipparchus.geometry.euclidean.threed.FieldVector3D in project Orekit by CS-SI.
the class FieldAttitudeTest method doTestInterpolation.
private <T extends RealFieldElement<T>> void doTestInterpolation(final Field<T> field) throws OrekitException {
T zero = field.getZero();
Utils.setDataRoot("regular-data");
final double ehMu = 3.9860047e14;
final double ae = 6.378137e6;
final double c20 = -1.08263e-3;
final double c30 = 2.54e-6;
final double c40 = 1.62e-6;
final double c50 = 2.3e-7;
final double c60 = -5.5e-7;
final FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(field).shiftedBy(584.);
final FieldVector3D<T> position = new FieldVector3D<>(zero.add(3220103.), zero.add(69623.), zero.add(6449822.));
final FieldVector3D<T> velocity = new FieldVector3D<>(zero.add(6414.7), zero.add(-2006.), zero.add(-3180.));
final FieldCircularOrbit<T> initialOrbit = new FieldCircularOrbit<>(new FieldPVCoordinates<>(position, velocity), FramesFactory.getEME2000(), date, ehMu);
FieldEcksteinHechlerPropagator<T> propagator = new FieldEcksteinHechlerPropagator<>(initialOrbit, ae, ehMu, c20, c30, c40, c50, c60);
OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
propagator.setAttitudeProvider(new BodyCenterPointing(initialOrbit.getFrame(), earth));
FieldAttitude<T> initialAttitude = propagator.propagate(initialOrbit.getDate()).getAttitude();
// set up a 5 points sample
List<FieldAttitude<T>> sample = new ArrayList<FieldAttitude<T>>();
for (double dt = 0; dt < 251.0; dt += 60.0) {
sample.add(propagator.propagate(date.shiftedBy(dt)).getAttitude());
}
// well inside the sample, interpolation should be better than quadratic shift
double maxShiftAngleError = 0;
double maxInterpolationAngleError = 0;
double maxShiftRateError = 0;
double maxInterpolationRateError = 0;
for (double dt_R = 0; dt_R < 240.0; dt_R += 1.0) {
T dt = zero.add(dt_R);
FieldAbsoluteDate<T> t = initialOrbit.getDate().shiftedBy(dt);
FieldAttitude<T> propagated = propagator.propagate(t).getAttitude();
T shiftAngleError = FieldRotation.distance(propagated.getRotation(), initialAttitude.shiftedBy(dt).getRotation());
T interpolationAngleError = FieldRotation.distance(propagated.getRotation(), initialAttitude.interpolate(t, sample).getRotation());
T shiftRateError = FieldVector3D.distance(propagated.getSpin(), initialAttitude.shiftedBy(dt).getSpin());
T interpolationRateError = FieldVector3D.distance(propagated.getSpin(), initialAttitude.interpolate(t, sample).getSpin());
maxShiftAngleError = FastMath.max(maxShiftAngleError, shiftAngleError.getReal());
maxInterpolationAngleError = FastMath.max(maxInterpolationAngleError, interpolationAngleError.getReal());
maxShiftRateError = FastMath.max(maxShiftRateError, shiftRateError.getReal());
maxInterpolationRateError = FastMath.max(maxInterpolationRateError, interpolationRateError.getReal());
}
Assert.assertTrue(maxShiftAngleError > 6.0e-6);
Assert.assertTrue(maxInterpolationAngleError < 6.0e-15);
Assert.assertTrue(maxShiftRateError > 7.0e-8);
Assert.assertTrue(maxInterpolationRateError < 2.0e-16);
// past sample end, interpolation error should increase, but still be far better than quadratic shift
maxShiftAngleError = 0;
maxInterpolationAngleError = 0;
maxShiftRateError = 0;
maxInterpolationRateError = 0;
for (double dt_R = 250.0; dt_R < 300.0; dt_R += 1.0) {
T dt = zero.add(dt_R);
FieldAbsoluteDate<T> t = initialOrbit.getDate().shiftedBy(dt);
FieldAttitude<T> propagated = propagator.propagate(t).getAttitude();
T shiftAngleError = FieldRotation.distance(propagated.getRotation(), initialAttitude.shiftedBy(dt).getRotation());
T interpolationAngleError = FieldRotation.distance(propagated.getRotation(), initialAttitude.interpolate(t, sample).getRotation());
T shiftRateError = FieldVector3D.distance(propagated.getSpin(), initialAttitude.shiftedBy(dt).getSpin());
T interpolationRateError = FieldVector3D.distance(propagated.getSpin(), initialAttitude.interpolate(t, sample).getSpin());
maxShiftAngleError = FastMath.max(maxShiftAngleError, shiftAngleError.getReal());
maxInterpolationAngleError = FastMath.max(maxInterpolationAngleError, interpolationAngleError.getReal());
maxShiftRateError = FastMath.max(maxShiftRateError, shiftRateError.getReal());
maxInterpolationRateError = FastMath.max(maxInterpolationRateError, interpolationRateError.getReal());
}
Assert.assertTrue(maxShiftAngleError > 1.0e-5);
Assert.assertTrue(maxInterpolationAngleError < 8.0e-13);
Assert.assertTrue(maxShiftRateError > 1.0e-7);
Assert.assertTrue(maxInterpolationRateError < 6.0e-14);
}
Aggregations