use of org.hipparchus.geometry.euclidean.threed.Vector3D in project Orekit by CS-SI.
the class BoxAndSolarArraySpacecraftTest method testOnlyLiftWithoutReflection.
@Test
public void testOnlyLiftWithoutReflection() throws OrekitException {
AbsoluteDate initialDate = propagator.getInitialState().getDate();
CelestialBody sun = CelestialBodyFactory.getSun();
BoxAndSolarArraySpacecraft s = new BoxAndSolarArraySpacecraft(1.5, 3.5, 2.5, sun, 20.0, Vector3D.PLUS_J, 1.0, 1.0, 1.0, 0.0);
Vector3D earthRot = new Vector3D(0.0, 0.0, 7.292115e-4);
for (double dt = 0; dt < 4000; dt += 60) {
AbsoluteDate date = initialDate.shiftedBy(dt);
SpacecraftState state = propagator.propagate(date);
// simple Earth fixed atmosphere
Vector3D p = state.getPVCoordinates().getPosition();
Vector3D v = state.getPVCoordinates().getVelocity();
Vector3D vAtm = Vector3D.crossProduct(earthRot, p);
Vector3D relativeVelocity = vAtm.subtract(v);
Vector3D drag = s.dragAcceleration(state.getDate(), state.getFrame(), state.getPVCoordinates().getPosition(), state.getAttitude().getRotation(), state.getMass(), 0.001, relativeVelocity, getDragParameters(s));
Assert.assertTrue(Vector3D.angle(relativeVelocity, drag) > 0.167);
Assert.assertTrue(Vector3D.angle(relativeVelocity, drag) < 0.736);
Vector3D sunDirection = sun.getPVCoordinates(date, state.getFrame()).getPosition().normalize();
Vector3D flux = new Vector3D(-4.56e-6, sunDirection);
Vector3D radiation = s.radiationPressureAcceleration(state.getDate(), state.getFrame(), state.getPVCoordinates().getPosition(), state.getAttitude().getRotation(), state.getMass(), flux, getRadiationParameters(s));
Assert.assertEquals(0.0, Vector3D.angle(flux, radiation), 1.0e-9);
}
}
use of org.hipparchus.geometry.euclidean.threed.Vector3D in project Orekit by CS-SI.
the class BoxAndSolarArraySpacecraftTest method testLiftVsNoLift.
@Test
public void testLiftVsNoLift() throws OrekitException, NoSuchFieldException, SecurityException, IllegalArgumentException, IllegalAccessException {
CelestialBody sun = CelestialBodyFactory.getSun();
// older implementation did not consider lift, so it really worked
// only for symmetrical shapes. For testing purposes, we will use a
// basic cubic shape without solar arrays and a relative atmosphere
// velocity either *exactly* facing a side or *exactly* along a main diagonal
BoxAndSolarArraySpacecraft.Facet[] facets = new BoxAndSolarArraySpacecraft.Facet[] { new BoxAndSolarArraySpacecraft.Facet(Vector3D.MINUS_I, 3.0), new BoxAndSolarArraySpacecraft.Facet(Vector3D.PLUS_I, 3.0), new BoxAndSolarArraySpacecraft.Facet(Vector3D.MINUS_J, 3.0), new BoxAndSolarArraySpacecraft.Facet(Vector3D.PLUS_J, 3.0), new BoxAndSolarArraySpacecraft.Facet(Vector3D.MINUS_K, 3.0), new BoxAndSolarArraySpacecraft.Facet(Vector3D.PLUS_K, 3.0) };
BoxAndSolarArraySpacecraft cube = new BoxAndSolarArraySpacecraft(facets, sun, 0.0, Vector3D.PLUS_J, 1.0, 1.0, 1.0, 0.0);
AbsoluteDate date = AbsoluteDate.J2000_EPOCH;
Frame frame = FramesFactory.getEME2000();
Vector3D position = new Vector3D(1234567.8, 9876543.21, 121212.3434);
double mass = 1000.0;
double density = 0.001;
Rotation rotation = Rotation.IDENTITY;
// head-on, there acceleration with lift should be twice acceleration without lift
Vector3D headOnVelocity = new Vector3D(2000, 0.0, 0.0);
Vector3D newHeadOnDrag = cube.dragAcceleration(date, frame, position, rotation, mass, density, headOnVelocity, getDragParameters(cube));
Vector3D oldHeadOnDrag = oldDragAcceleration(cube, date, frame, position, rotation, mass, density, headOnVelocity);
Assert.assertThat(newHeadOnDrag, OrekitMatchers.vectorCloseTo(oldHeadOnDrag.scalarMultiply(2), 1));
// on an angle, the no lift implementation applies drag to the velocity direction
// instead of to the facet normal direction. In the symmetrical case, this implies
// it applied a single cos(θ) coefficient (projected surface reduction) instead
// of using cos²(θ) (projected surface reduction *and* normal component projection)
// and since molecule is reflected backward with the same velocity, this implies a
// factor 2 in linear momentum differences
Vector3D diagonalVelocity = new Vector3D(2000, 2000, 2000);
Vector3D newDiagDrag = cube.dragAcceleration(date, frame, position, rotation, mass, density, diagonalVelocity, getDragParameters(cube));
Vector3D oldDiagDrag = oldDragAcceleration(cube, date, frame, position, rotation, mass, density, diagonalVelocity);
double oldMissingCoeff = 2.0 / FastMath.sqrt(3.0);
Vector3D fixedOldDrag = new Vector3D(oldMissingCoeff, oldDiagDrag);
Assert.assertThat(newDiagDrag, OrekitMatchers.vectorCloseTo(fixedOldDrag, 1));
}
use of org.hipparchus.geometry.euclidean.threed.Vector3D in project Orekit by CS-SI.
the class BoxAndSolarArraySpacecraftTest method testNormalSunAlignedDouble.
@Test
public void testNormalSunAlignedDouble() throws OrekitException {
BoxAndSolarArraySpacecraft s = new BoxAndSolarArraySpacecraft(0, 0, 0, (date, frame) -> new TimeStampedPVCoordinates(date, new Vector3D(0, 1e6, 0), Vector3D.ZERO), 20.0, Vector3D.PLUS_J, 0.0, 1.0, 0.0);
Vector3D normal = s.getNormal(AbsoluteDate.J2000_EPOCH, FramesFactory.getEME2000(), Vector3D.ZERO, Rotation.IDENTITY);
Assert.assertEquals(0, Vector3D.dotProduct(normal, Vector3D.PLUS_J), 1.0e-16);
}
use of org.hipparchus.geometry.euclidean.threed.Vector3D in project Orekit by CS-SI.
the class HarmonicParametricAccelerationTest method testEquivalentInertialManeuver.
@Test
public void testEquivalentInertialManeuver() throws OrekitException {
final double delta = FastMath.toRadians(-7.4978);
final double alpha = FastMath.toRadians(351);
final Vector3D direction = new Vector3D(alpha, delta);
final double mass = 2500;
final double isp = Double.POSITIVE_INFINITY;
final double duration = 4000;
final double f = 400;
final AttitudeProvider maneuverLaw = new InertialProvider(new Rotation(direction, Vector3D.PLUS_I));
ConstantThrustManeuver maneuver = new ConstantThrustManeuver(initialOrbit.getDate().shiftedBy(-10.0), duration, f, isp, Vector3D.PLUS_I);
final AttitudeProvider accelerationLaw = new InertialProvider(new Rotation(direction, Vector3D.PLUS_K));
final HarmonicParametricAcceleration inertialAcceleration = new HarmonicParametricAcceleration(direction, true, "", AbsoluteDate.J2000_EPOCH, Double.POSITIVE_INFINITY, 1);
Assert.assertTrue(inertialAcceleration.dependsOnPositionOnly());
inertialAcceleration.getParametersDrivers()[0].setValue(f / mass);
inertialAcceleration.getParametersDrivers()[1].setValue(0.5 * FastMath.PI);
doTestEquivalentManeuver(mass, maneuverLaw, maneuver, accelerationLaw, inertialAcceleration, 1.0e-15);
}
use of org.hipparchus.geometry.euclidean.threed.Vector3D in project Orekit by CS-SI.
the class HarmonicParametricAccelerationTest method testEquivalentInertialManeuverField.
@Test
public void testEquivalentInertialManeuverField() throws OrekitException {
final double delta = FastMath.toRadians(-7.4978);
final double alpha = FastMath.toRadians(351);
final Vector3D direction = new Vector3D(alpha, delta);
final double mass = 2500;
final double isp = Double.POSITIVE_INFINITY;
final double duration = 4000;
final double f = 400;
final AttitudeProvider maneuverLaw = new InertialProvider(new Rotation(direction, Vector3D.PLUS_I));
ConstantThrustManeuver maneuver = new ConstantThrustManeuver(initialOrbit.getDate().shiftedBy(-10.0), duration, f, isp, Vector3D.PLUS_I);
final AttitudeProvider accelerationLaw = new InertialProvider(new Rotation(direction, Vector3D.PLUS_K));
final HarmonicParametricAcceleration inertialAcceleration = new HarmonicParametricAcceleration(direction, true, "", AbsoluteDate.J2000_EPOCH, Double.POSITIVE_INFINITY, 1);
inertialAcceleration.getParametersDrivers()[0].setValue(f / mass);
inertialAcceleration.getParametersDrivers()[1].setValue(0.5 * FastMath.PI);
doTestEquivalentManeuver(Decimal64Field.getInstance(), mass, maneuverLaw, maneuver, accelerationLaw, inertialAcceleration, 3.0e-9);
}
Aggregations