use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class HarmonicParametricAccelerationTest method testCoefficientsDetermination.
@Test
public void testCoefficientsDetermination() throws OrekitException {
final double mass = 2500;
final Orbit orbit = new CircularOrbit(7500000.0, 1.0e-4, 1.0e-3, 1.7, 0.3, 0.5, PositionAngle.TRUE, FramesFactory.getEME2000(), new AbsoluteDate(new DateComponents(2004, 2, 3), TimeComponents.H00, TimeScalesFactory.getUTC()), Constants.EIGEN5C_EARTH_MU);
final double period = orbit.getKeplerianPeriod();
AttitudeProvider maneuverLaw = new LofOffset(orbit.getFrame(), LOFType.VNC);
SpacecraftState initialState = new SpacecraftState(orbit, maneuverLaw.getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass);
double dP = 10.0;
double minStep = 0.001;
double maxStep = 100;
double[][] tolerance = NumericalPropagator.tolerances(dP, orbit, orbit.getType());
// generate PV measurements corresponding to a tangential maneuver
AdaptiveStepsizeIntegrator integrator0 = new DormandPrince853Integrator(minStep, maxStep, tolerance[0], tolerance[1]);
integrator0.setInitialStepSize(60);
final NumericalPropagator propagator0 = new NumericalPropagator(integrator0);
propagator0.setInitialState(initialState);
propagator0.setAttitudeProvider(maneuverLaw);
ForceModel hpaRefX1 = new HarmonicParametricAcceleration(Vector3D.PLUS_I, true, "refX1", null, period, 1);
ForceModel hpaRefY1 = new HarmonicParametricAcceleration(Vector3D.PLUS_J, true, "refY1", null, period, 1);
ForceModel hpaRefZ2 = new HarmonicParametricAcceleration(Vector3D.PLUS_K, true, "refZ2", null, period, 2);
hpaRefX1.getParametersDrivers()[0].setValue(2.4e-2);
hpaRefX1.getParametersDrivers()[1].setValue(3.1);
hpaRefY1.getParametersDrivers()[0].setValue(4.0e-2);
hpaRefY1.getParametersDrivers()[1].setValue(0.3);
hpaRefZ2.getParametersDrivers()[0].setValue(1.0e-2);
hpaRefZ2.getParametersDrivers()[1].setValue(1.8);
propagator0.addForceModel(hpaRefX1);
propagator0.addForceModel(hpaRefY1);
propagator0.addForceModel(hpaRefZ2);
final List<ObservedMeasurement<?>> measurements = new ArrayList<>();
propagator0.setMasterMode(10.0, (state, isLast) -> measurements.add(new PV(state.getDate(), state.getPVCoordinates().getPosition(), state.getPVCoordinates().getVelocity(), 1.0e-3, 1.0e-6, 1.0)));
propagator0.propagate(orbit.getDate().shiftedBy(900));
// set up an estimator to retrieve the maneuver as several harmonic accelerations in inertial frame
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.TRUE, dP);
propagatorBuilder.addForceModel(new HarmonicParametricAcceleration(Vector3D.PLUS_I, true, "X1", null, period, 1));
propagatorBuilder.addForceModel(new HarmonicParametricAcceleration(Vector3D.PLUS_J, true, "Y1", null, period, 1));
propagatorBuilder.addForceModel(new HarmonicParametricAcceleration(Vector3D.PLUS_K, true, "Z2", null, period, 2));
final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), propagatorBuilder);
estimator.setParametersConvergenceThreshold(1.0e-2);
estimator.setMaxIterations(20);
estimator.setMaxEvaluations(100);
for (final ObservedMeasurement<?> measurement : measurements) {
estimator.addMeasurement(measurement);
}
// we will estimate only the force model parameters, not the orbit
for (final ParameterDriver d : estimator.getOrbitalParametersDrivers(false).getDrivers()) {
d.setSelected(false);
}
setParameter(estimator, "X1 γ", 1.0e-2);
setParameter(estimator, "X1 φ", 4.0);
setParameter(estimator, "Y1 γ", 1.0e-2);
setParameter(estimator, "Y1 φ", 0.0);
setParameter(estimator, "Z2 γ", 1.0e-2);
setParameter(estimator, "Z2 φ", 1.0);
estimator.estimate();
Assert.assertTrue(estimator.getIterationsCount() < 15);
Assert.assertTrue(estimator.getEvaluationsCount() < 15);
Assert.assertEquals(0.0, estimator.getOptimum().getRMS(), 1.0e-5);
Assert.assertEquals(hpaRefX1.getParametersDrivers()[0].getValue(), getParameter(estimator, "X1 γ"), 1.e-12);
Assert.assertEquals(hpaRefX1.getParametersDrivers()[1].getValue(), getParameter(estimator, "X1 φ"), 1.e-12);
Assert.assertEquals(hpaRefY1.getParametersDrivers()[0].getValue(), getParameter(estimator, "Y1 γ"), 1.e-12);
Assert.assertEquals(hpaRefY1.getParametersDrivers()[1].getValue(), getParameter(estimator, "Y1 φ"), 1.e-12);
Assert.assertEquals(hpaRefZ2.getParametersDrivers()[0].getValue(), getParameter(estimator, "Z2 γ"), 1.e-12);
Assert.assertEquals(hpaRefZ2.getParametersDrivers()[1].getValue(), getParameter(estimator, "Z2 φ"), 1.e-12);
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class OrbitDeterminationTest method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param mu central attraction coefficient
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if inertial frame cannot be created
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final double mu) throws NoSuchElementException, OrekitException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
return new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A), parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
return new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
return new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_TLE_LINE_1)) {
final String line1 = parser.getString(ParameterKey.ORBIT_TLE_LINE_1);
final String line2 = parser.getString(ParameterKey.ORBIT_TLE_LINE_2);
final TLE tle = new TLE(line1, line2);
TLEPropagator propagator = TLEPropagator.selectExtrapolator(tle);
// propagator.setEphemerisMode();
AbsoluteDate initDate = tle.getDate();
SpacecraftState initialState = propagator.getInitialState();
// Transformation from TEME to frame.
Transform t = FramesFactory.getTEME().getTransformTo(FramesFactory.getEME2000(), initDate.getDate());
return new CartesianOrbit(t.transformPVCoordinates(initialState.getPVCoordinates()), frame, initDate, mu);
} else {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) };
return new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
}
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class KalmanOrbitDeterminationTest method createOrbit.
/**
* Create an orbit from input parameters
* @param parser input file parser
* @param mu central attraction coefficient
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if inertial frame cannot be created
*/
private Orbit createOrbit(final KeyValueFileParser<ParameterKey> parser, final double mu) throws NoSuchElementException, OrekitException {
final Frame frame;
if (!parser.containsKey(ParameterKey.INERTIAL_FRAME)) {
frame = FramesFactory.getEME2000();
} else {
frame = parser.getInertialFrame(ParameterKey.INERTIAL_FRAME);
}
// Orbit definition
PositionAngle angleType = PositionAngle.MEAN;
if (parser.containsKey(ParameterKey.ORBIT_ANGLE_TYPE)) {
angleType = PositionAngle.valueOf(parser.getString(ParameterKey.ORBIT_ANGLE_TYPE).toUpperCase());
}
if (parser.containsKey(ParameterKey.ORBIT_KEPLERIAN_A)) {
return new KeplerianOrbit(parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_A), parser.getDouble(ParameterKey.ORBIT_KEPLERIAN_E), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_I), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_PA), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_RAAN), parser.getAngle(ParameterKey.ORBIT_KEPLERIAN_ANOMALY), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_EQUINOCTIAL_A)) {
return new EquinoctialOrbit(parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_A), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_EY), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HX), parser.getDouble(ParameterKey.ORBIT_EQUINOCTIAL_HY), parser.getAngle(ParameterKey.ORBIT_EQUINOCTIAL_LAMBDA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_CIRCULAR_A)) {
return new CircularOrbit(parser.getDouble(ParameterKey.ORBIT_CIRCULAR_A), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EX), parser.getDouble(ParameterKey.ORBIT_CIRCULAR_EY), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_I), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_RAAN), parser.getAngle(ParameterKey.ORBIT_CIRCULAR_ALPHA), angleType, frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
} else if (parser.containsKey(ParameterKey.ORBIT_TLE_LINE_1)) {
final String line1 = parser.getString(ParameterKey.ORBIT_TLE_LINE_1);
final String line2 = parser.getString(ParameterKey.ORBIT_TLE_LINE_2);
final TLE tle = new TLE(line1, line2);
TLEPropagator propagator = TLEPropagator.selectExtrapolator(tle);
// propagator.setEphemerisMode();
AbsoluteDate initDate = tle.getDate();
SpacecraftState initialState = propagator.getInitialState();
// Transformation from TEME to frame.
Transform t = FramesFactory.getTEME().getTransformTo(FramesFactory.getEME2000(), initDate.getDate());
return new CartesianOrbit(t.transformPVCoordinates(initialState.getPVCoordinates()), frame, initDate, mu);
} else {
final double[] pos = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_PZ) };
final double[] vel = { parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VX), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VY), parser.getDouble(ParameterKey.ORBIT_CARTESIAN_VZ) };
return new CartesianOrbit(new PVCoordinates(new Vector3D(pos), new Vector3D(vel)), frame, parser.getDate(ParameterKey.ORBIT_DATE, TimeScalesFactory.getUTC()), mu);
}
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class BoxAndSolarArraySpacecraftTest method setUp.
@Before
public void setUp() {
try {
Utils.setDataRoot("regular-data");
mu = 3.9860047e14;
double ae = 6.378137e6;
double c20 = -1.08263e-3;
double c30 = 2.54e-6;
double c40 = 1.62e-6;
double c50 = 2.3e-7;
double c60 = -5.5e-7;
AbsoluteDate date = new AbsoluteDate(new DateComponents(1970, 7, 1), new TimeComponents(13, 59, 27.816), TimeScalesFactory.getUTC());
// Satellite position as circular parameters, raan chosen to have sun elevation with
// respect to orbit plane roughly evolving roughly from 15 to 15.2 degrees in the test range
Orbit circ = new CircularOrbit(7178000.0, 0.5e-4, -0.5e-4, FastMath.toRadians(50.), FastMath.toRadians(280), FastMath.toRadians(10.0), PositionAngle.MEAN, FramesFactory.getEME2000(), date, mu);
propagator = new EcksteinHechlerPropagator(circ, new LofOffset(circ.getFrame(), LOFType.VVLH), ae, mu, c20, c30, c40, c50, c60);
} catch (OrekitException oe) {
Assert.fail(oe.getLocalizedMessage());
}
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class DSSTPropagatorTest method testIssue364.
@Test
public void testIssue364() throws OrekitException {
Utils.setDataRoot("regular-data");
AbsoluteDate date = new AbsoluteDate("2003-06-18T00:00:00.000", TimeScalesFactory.getUTC());
CircularOrbit orbit = new CircularOrbit(7389068.5, 0.0, 0.0, 1.709573, 1.308398, 0, PositionAngle.MEAN, FramesFactory.getTOD(IERSConventions.IERS_2010, false), date, Constants.WGS84_EARTH_MU);
SpacecraftState osculatingState = new SpacecraftState(orbit, 1116.2829);
List<DSSTForceModel> dsstForceModels = new ArrayList<DSSTForceModel>();
dsstForceModels.add(new DSSTThirdBody(CelestialBodyFactory.getMoon()));
dsstForceModels.add(new DSSTThirdBody(CelestialBodyFactory.getSun()));
SpacecraftState meanState = DSSTPropagator.computeMeanState(osculatingState, null, dsstForceModels);
Assert.assertEquals(0.421, osculatingState.getA() - meanState.getA(), 1.0e-3);
Assert.assertEquals(-5.23e-8, osculatingState.getEquinoctialEx() - meanState.getEquinoctialEx(), 1.0e-10);
Assert.assertEquals(15.22e-8, osculatingState.getEquinoctialEy() - meanState.getEquinoctialEy(), 1.0e-10);
Assert.assertEquals(-3.15e-8, osculatingState.getHx() - meanState.getHx(), 1.0e-10);
Assert.assertEquals(2.83e-8, osculatingState.getHy() - meanState.getHy(), 1.0e-10);
Assert.assertEquals(15.96e-8, osculatingState.getLM() - meanState.getLM(), 1.0e-10);
}
Aggregations