use of org.orekit.estimation.leastsquares.BatchLSEstimator in project Orekit by CS-SI.
the class HarmonicParametricAccelerationTest method testCoefficientsDetermination.
@Test
public void testCoefficientsDetermination() throws OrekitException {
final double mass = 2500;
final Orbit orbit = new CircularOrbit(7500000.0, 1.0e-4, 1.0e-3, 1.7, 0.3, 0.5, PositionAngle.TRUE, FramesFactory.getEME2000(), new AbsoluteDate(new DateComponents(2004, 2, 3), TimeComponents.H00, TimeScalesFactory.getUTC()), Constants.EIGEN5C_EARTH_MU);
final double period = orbit.getKeplerianPeriod();
AttitudeProvider maneuverLaw = new LofOffset(orbit.getFrame(), LOFType.VNC);
SpacecraftState initialState = new SpacecraftState(orbit, maneuverLaw.getAttitude(orbit, orbit.getDate(), orbit.getFrame()), mass);
double dP = 10.0;
double minStep = 0.001;
double maxStep = 100;
double[][] tolerance = NumericalPropagator.tolerances(dP, orbit, orbit.getType());
// generate PV measurements corresponding to a tangential maneuver
AdaptiveStepsizeIntegrator integrator0 = new DormandPrince853Integrator(minStep, maxStep, tolerance[0], tolerance[1]);
integrator0.setInitialStepSize(60);
final NumericalPropagator propagator0 = new NumericalPropagator(integrator0);
propagator0.setInitialState(initialState);
propagator0.setAttitudeProvider(maneuverLaw);
ForceModel hpaRefX1 = new HarmonicParametricAcceleration(Vector3D.PLUS_I, true, "refX1", null, period, 1);
ForceModel hpaRefY1 = new HarmonicParametricAcceleration(Vector3D.PLUS_J, true, "refY1", null, period, 1);
ForceModel hpaRefZ2 = new HarmonicParametricAcceleration(Vector3D.PLUS_K, true, "refZ2", null, period, 2);
hpaRefX1.getParametersDrivers()[0].setValue(2.4e-2);
hpaRefX1.getParametersDrivers()[1].setValue(3.1);
hpaRefY1.getParametersDrivers()[0].setValue(4.0e-2);
hpaRefY1.getParametersDrivers()[1].setValue(0.3);
hpaRefZ2.getParametersDrivers()[0].setValue(1.0e-2);
hpaRefZ2.getParametersDrivers()[1].setValue(1.8);
propagator0.addForceModel(hpaRefX1);
propagator0.addForceModel(hpaRefY1);
propagator0.addForceModel(hpaRefZ2);
final List<ObservedMeasurement<?>> measurements = new ArrayList<>();
propagator0.setMasterMode(10.0, (state, isLast) -> measurements.add(new PV(state.getDate(), state.getPVCoordinates().getPosition(), state.getPVCoordinates().getVelocity(), 1.0e-3, 1.0e-6, 1.0)));
propagator0.propagate(orbit.getDate().shiftedBy(900));
// set up an estimator to retrieve the maneuver as several harmonic accelerations in inertial frame
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.TRUE, dP);
propagatorBuilder.addForceModel(new HarmonicParametricAcceleration(Vector3D.PLUS_I, true, "X1", null, period, 1));
propagatorBuilder.addForceModel(new HarmonicParametricAcceleration(Vector3D.PLUS_J, true, "Y1", null, period, 1));
propagatorBuilder.addForceModel(new HarmonicParametricAcceleration(Vector3D.PLUS_K, true, "Z2", null, period, 2));
final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), propagatorBuilder);
estimator.setParametersConvergenceThreshold(1.0e-2);
estimator.setMaxIterations(20);
estimator.setMaxEvaluations(100);
for (final ObservedMeasurement<?> measurement : measurements) {
estimator.addMeasurement(measurement);
}
// we will estimate only the force model parameters, not the orbit
for (final ParameterDriver d : estimator.getOrbitalParametersDrivers(false).getDrivers()) {
d.setSelected(false);
}
setParameter(estimator, "X1 γ", 1.0e-2);
setParameter(estimator, "X1 φ", 4.0);
setParameter(estimator, "Y1 γ", 1.0e-2);
setParameter(estimator, "Y1 φ", 0.0);
setParameter(estimator, "Z2 γ", 1.0e-2);
setParameter(estimator, "Z2 φ", 1.0);
estimator.estimate();
Assert.assertTrue(estimator.getIterationsCount() < 15);
Assert.assertTrue(estimator.getEvaluationsCount() < 15);
Assert.assertEquals(0.0, estimator.getOptimum().getRMS(), 1.0e-5);
Assert.assertEquals(hpaRefX1.getParametersDrivers()[0].getValue(), getParameter(estimator, "X1 γ"), 1.e-12);
Assert.assertEquals(hpaRefX1.getParametersDrivers()[1].getValue(), getParameter(estimator, "X1 φ"), 1.e-12);
Assert.assertEquals(hpaRefY1.getParametersDrivers()[0].getValue(), getParameter(estimator, "Y1 γ"), 1.e-12);
Assert.assertEquals(hpaRefY1.getParametersDrivers()[1].getValue(), getParameter(estimator, "Y1 φ"), 1.e-12);
Assert.assertEquals(hpaRefZ2.getParametersDrivers()[0].getValue(), getParameter(estimator, "Z2 γ"), 1.e-12);
Assert.assertEquals(hpaRefZ2.getParametersDrivers()[1].getValue(), getParameter(estimator, "Z2 φ"), 1.e-12);
}
use of org.orekit.estimation.leastsquares.BatchLSEstimator in project Orekit by CS-SI.
the class GroundStationTest method testEstimateStationPosition.
@Test
public void testEstimateStationPosition() throws OrekitException, IOException, ClassNotFoundException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// create perfect range measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// move one station
final RandomGenerator random = new Well19937a(0x4adbecfc743bda60l);
final TopocentricFrame base = context.stations.get(0).getBaseFrame();
final BodyShape parent = base.getParentShape();
final Vector3D baseOrigin = parent.transform(base.getPoint());
final Vector3D deltaTopo = new Vector3D(2 * random.nextDouble() - 1, 2 * random.nextDouble() - 1, 2 * random.nextDouble() - 1);
final Transform topoToParent = base.getTransformTo(parent.getBodyFrame(), (AbsoluteDate) null);
final Vector3D deltaParent = topoToParent.transformVector(deltaTopo);
final String movedSuffix = "-moved";
final GroundStation moved = new GroundStation(new TopocentricFrame(parent, parent.transform(baseOrigin.subtract(deltaParent), parent.getBodyFrame(), null), base.getName() + movedSuffix), context.ut1.getEOPHistory(), context.stations.get(0).getDisplacements());
// create orbit estimator
final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), propagatorBuilder);
for (final ObservedMeasurement<?> measurement : measurements) {
final Range range = (Range) measurement;
final String name = range.getStation().getBaseFrame().getName() + movedSuffix;
if (moved.getBaseFrame().getName().equals(name)) {
estimator.addMeasurement(new Range(moved, range.getDate(), range.getObservedValue()[0], range.getTheoreticalStandardDeviation()[0], range.getBaseWeight()[0]));
} else {
estimator.addMeasurement(range);
}
}
estimator.setParametersConvergenceThreshold(1.0e-3);
estimator.setMaxIterations(100);
estimator.setMaxEvaluations(200);
// we want to estimate station offsets
moved.getEastOffsetDriver().setSelected(true);
moved.getNorthOffsetDriver().setSelected(true);
moved.getZenithOffsetDriver().setSelected(true);
EstimationTestUtils.checkFit(context, estimator, 2, 3, 0.0, 5.6e-7, 0.0, 1.4e-6, 0.0, 4.8e-7, 0.0, 2.6e-10);
Assert.assertEquals(deltaTopo.getX(), moved.getEastOffsetDriver().getValue(), 4.5e-7);
Assert.assertEquals(deltaTopo.getY(), moved.getNorthOffsetDriver().getValue(), 6.2e-7);
Assert.assertEquals(deltaTopo.getZ(), moved.getZenithOffsetDriver().getValue(), 2.6e-7);
GeodeticPoint result = moved.getOffsetGeodeticPoint(null);
GeodeticPoint reference = context.stations.get(0).getBaseFrame().getPoint();
Assert.assertEquals(reference.getLatitude(), result.getLatitude(), 1.4e-14);
Assert.assertEquals(reference.getLongitude(), result.getLongitude(), 2.9e-14);
Assert.assertEquals(reference.getAltitude(), result.getAltitude(), 2.6e-7);
RealMatrix normalizedCovariances = estimator.getOptimum().getCovariances(1.0e-10);
RealMatrix physicalCovariances = estimator.getPhysicalCovariances(1.0e-10);
Assert.assertEquals(9, normalizedCovariances.getRowDimension());
Assert.assertEquals(9, normalizedCovariances.getColumnDimension());
Assert.assertEquals(9, physicalCovariances.getRowDimension());
Assert.assertEquals(9, physicalCovariances.getColumnDimension());
Assert.assertEquals(0.55431, physicalCovariances.getEntry(6, 6), 1.0e-5);
Assert.assertEquals(0.22694, physicalCovariances.getEntry(7, 7), 1.0e-5);
Assert.assertEquals(0.13106, physicalCovariances.getEntry(8, 8), 1.0e-5);
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
oos.writeObject(moved.getEstimatedEarthFrame().getTransformProvider());
Assert.assertTrue(bos.size() > 155000);
Assert.assertTrue(bos.size() < 160000);
ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bis);
EstimatedEarthFrameProvider deserialized = (EstimatedEarthFrameProvider) ois.readObject();
Assert.assertEquals(moved.getPrimeMeridianOffsetDriver().getValue(), deserialized.getPrimeMeridianOffsetDriver().getValue(), 1.0e-15);
Assert.assertEquals(moved.getPrimeMeridianDriftDriver().getValue(), deserialized.getPrimeMeridianDriftDriver().getValue(), 1.0e-15);
Assert.assertEquals(moved.getPolarOffsetXDriver().getValue(), deserialized.getPolarOffsetXDriver().getValue(), 1.0e-15);
Assert.assertEquals(moved.getPolarDriftXDriver().getValue(), deserialized.getPolarDriftXDriver().getValue(), 1.0e-15);
Assert.assertEquals(moved.getPolarOffsetYDriver().getValue(), deserialized.getPolarOffsetYDriver().getValue(), 1.0e-15);
Assert.assertEquals(moved.getPolarDriftYDriver().getValue(), deserialized.getPolarDriftYDriver().getValue(), 1.0e-15);
}
use of org.orekit.estimation.leastsquares.BatchLSEstimator in project Orekit by CS-SI.
the class OrbitDetermination method createEstimator.
/**
* Set up estimator.
* @param parser input file parser
* @param propagatorBuilder propagator builder
* @return estimator
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if some propagator parameters cannot be retrieved
*/
private BatchLSEstimator createEstimator(final KeyValueFileParser<ParameterKey> parser, final NumericalPropagatorBuilder propagatorBuilder) throws NoSuchElementException, OrekitException {
final boolean optimizerIsLevenbergMarquardt;
if (!parser.containsKey(ParameterKey.ESTIMATOR_OPTIMIZATION_ENGINE)) {
optimizerIsLevenbergMarquardt = true;
} else {
final String engine = parser.getString(ParameterKey.ESTIMATOR_OPTIMIZATION_ENGINE);
optimizerIsLevenbergMarquardt = engine.toLowerCase().contains("levenberg");
}
final LeastSquaresOptimizer optimizer;
if (optimizerIsLevenbergMarquardt) {
// we want to use a Levenberg-Marquardt optimization engine
final double initialStepBoundFactor;
if (!parser.containsKey(ParameterKey.ESTIMATOR_LEVENBERG_MARQUARDT_INITIAL_STEP_BOUND_FACTOR)) {
initialStepBoundFactor = 100.0;
} else {
initialStepBoundFactor = parser.getDouble(ParameterKey.ESTIMATOR_LEVENBERG_MARQUARDT_INITIAL_STEP_BOUND_FACTOR);
}
optimizer = new LevenbergMarquardtOptimizer().withInitialStepBoundFactor(initialStepBoundFactor);
} else {
// we want to use a Gauss-Newton optimization engine
optimizer = new GaussNewtonOptimizer(Decomposition.QR);
}
final double convergenceThreshold;
if (!parser.containsKey(ParameterKey.ESTIMATOR_NORMALIZED_PARAMETERS_CONVERGENCE_THRESHOLD)) {
convergenceThreshold = 1.0e-3;
} else {
convergenceThreshold = parser.getDouble(ParameterKey.ESTIMATOR_NORMALIZED_PARAMETERS_CONVERGENCE_THRESHOLD);
}
final int maxIterations;
if (!parser.containsKey(ParameterKey.ESTIMATOR_MAX_ITERATIONS)) {
maxIterations = 10;
} else {
maxIterations = parser.getInt(ParameterKey.ESTIMATOR_MAX_ITERATIONS);
}
final int maxEvaluations;
if (!parser.containsKey(ParameterKey.ESTIMATOR_MAX_EVALUATIONS)) {
maxEvaluations = 20;
} else {
maxEvaluations = parser.getInt(ParameterKey.ESTIMATOR_MAX_EVALUATIONS);
}
final BatchLSEstimator estimator = new BatchLSEstimator(optimizer, propagatorBuilder);
estimator.setParametersConvergenceThreshold(convergenceThreshold);
estimator.setMaxIterations(maxIterations);
estimator.setMaxEvaluations(maxEvaluations);
return estimator;
}
use of org.orekit.estimation.leastsquares.BatchLSEstimator in project Orekit by CS-SI.
the class OrbitDetermination method run.
private void run(final File input, final File home) throws IOException, IllegalArgumentException, OrekitException, ParseException {
// read input parameters
KeyValueFileParser<ParameterKey> parser = new KeyValueFileParser<ParameterKey>(ParameterKey.class);
try (final FileInputStream fis = new FileInputStream(input)) {
parser.parseInput(input.getAbsolutePath(), fis);
}
// log file
final String baseName;
final PrintStream logStream;
if (parser.containsKey(ParameterKey.OUTPUT_BASE_NAME) && parser.getString(ParameterKey.OUTPUT_BASE_NAME).length() > 0) {
baseName = parser.getString(ParameterKey.OUTPUT_BASE_NAME);
logStream = new PrintStream(new File(home, baseName + "-log.out"), "UTF-8");
} else {
baseName = null;
logStream = null;
}
final RangeLog rangeLog = new RangeLog(home, baseName);
final RangeRateLog rangeRateLog = new RangeRateLog(home, baseName);
final AzimuthLog azimuthLog = new AzimuthLog(home, baseName);
final ElevationLog elevationLog = new ElevationLog(home, baseName);
final PositionLog positionLog = new PositionLog(home, baseName);
final VelocityLog velocityLog = new VelocityLog(home, baseName);
try {
// gravity field
final NormalizedSphericalHarmonicsProvider gravityField = createGravityField(parser);
// Orbit initial guess
final Orbit initialGuess = createOrbit(parser, gravityField.getMu());
// IERS conventions
final IERSConventions conventions;
if (!parser.containsKey(ParameterKey.IERS_CONVENTIONS)) {
conventions = IERSConventions.IERS_2010;
} else {
conventions = IERSConventions.valueOf("IERS_" + parser.getInt(ParameterKey.IERS_CONVENTIONS));
}
// central body
final OneAxisEllipsoid body = createBody(parser);
// propagator builder
final NumericalPropagatorBuilder propagatorBuilder = createPropagatorBuilder(parser, conventions, gravityField, body, initialGuess);
// estimator
final BatchLSEstimator estimator = createEstimator(parser, propagatorBuilder);
// measurements
final List<ObservedMeasurement<?>> measurements = new ArrayList<ObservedMeasurement<?>>();
for (final String fileName : parser.getStringsList(ParameterKey.MEASUREMENTS_FILES, ',')) {
measurements.addAll(readMeasurements(new File(input.getParentFile(), fileName), createStationsData(parser, body), createPVData(parser), createSatRangeBias(parser), createWeights(parser), createRangeOutliersManager(parser), createRangeRateOutliersManager(parser), createAzElOutliersManager(parser), createPVOutliersManager(parser)));
}
for (ObservedMeasurement<?> measurement : measurements) {
estimator.addMeasurement(measurement);
}
// estimate orbit
estimator.setObserver(new BatchLSObserver() {
private PVCoordinates previousPV;
{
previousPV = initialGuess.getPVCoordinates();
final String header = "iteration evaluations ΔP(m) ΔV(m/s) RMS nb Range nb Range-rate nb Angular nb PV%n";
System.out.format(Locale.US, header);
if (logStream != null) {
logStream.format(Locale.US, header);
}
}
/**
* {@inheritDoc}
*/
@Override
public void evaluationPerformed(final int iterationsCount, final int evaluationsCount, final Orbit[] orbits, final ParameterDriversList estimatedOrbitalParameters, final ParameterDriversList estimatedPropagatorParameters, final ParameterDriversList estimatedMeasurementsParameters, final EstimationsProvider evaluationsProvider, final LeastSquaresProblem.Evaluation lspEvaluation) {
PVCoordinates currentPV = orbits[0].getPVCoordinates();
final String format0 = " %2d %2d %16.12f %s %s %s %s%n";
final String format = " %2d %2d %13.6f %12.9f %16.12f %s %s %s %s%n";
final EvaluationCounter<Range> rangeCounter = new EvaluationCounter<Range>();
final EvaluationCounter<RangeRate> rangeRateCounter = new EvaluationCounter<RangeRate>();
final EvaluationCounter<AngularAzEl> angularCounter = new EvaluationCounter<AngularAzEl>();
final EvaluationCounter<PV> pvCounter = new EvaluationCounter<PV>();
for (final Map.Entry<ObservedMeasurement<?>, EstimatedMeasurement<?>> entry : estimator.getLastEstimations().entrySet()) {
if (entry.getKey() instanceof Range) {
@SuppressWarnings("unchecked") EstimatedMeasurement<Range> evaluation = (EstimatedMeasurement<Range>) entry.getValue();
rangeCounter.add(evaluation);
} else if (entry.getKey() instanceof RangeRate) {
@SuppressWarnings("unchecked") EstimatedMeasurement<RangeRate> evaluation = (EstimatedMeasurement<RangeRate>) entry.getValue();
rangeRateCounter.add(evaluation);
} else if (entry.getKey() instanceof AngularAzEl) {
@SuppressWarnings("unchecked") EstimatedMeasurement<AngularAzEl> evaluation = (EstimatedMeasurement<AngularAzEl>) entry.getValue();
angularCounter.add(evaluation);
} else if (entry.getKey() instanceof PV) {
@SuppressWarnings("unchecked") EstimatedMeasurement<PV> evaluation = (EstimatedMeasurement<PV>) entry.getValue();
pvCounter.add(evaluation);
}
}
if (evaluationsCount == 1) {
System.out.format(Locale.US, format0, iterationsCount, evaluationsCount, lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
if (logStream != null) {
logStream.format(Locale.US, format0, iterationsCount, evaluationsCount, lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
}
} else {
System.out.format(Locale.US, format, iterationsCount, evaluationsCount, Vector3D.distance(previousPV.getPosition(), currentPV.getPosition()), Vector3D.distance(previousPV.getVelocity(), currentPV.getVelocity()), lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
if (logStream != null) {
logStream.format(Locale.US, format, iterationsCount, evaluationsCount, Vector3D.distance(previousPV.getPosition(), currentPV.getPosition()), Vector3D.distance(previousPV.getVelocity(), currentPV.getVelocity()), lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
}
}
previousPV = currentPV;
}
});
Orbit estimated = estimator.estimate()[0].getInitialState().getOrbit();
// compute some statistics
for (final Map.Entry<ObservedMeasurement<?>, EstimatedMeasurement<?>> entry : estimator.getLastEstimations().entrySet()) {
if (entry.getKey() instanceof Range) {
@SuppressWarnings("unchecked") EstimatedMeasurement<Range> evaluation = (EstimatedMeasurement<Range>) entry.getValue();
rangeLog.add(evaluation);
} else if (entry.getKey() instanceof RangeRate) {
@SuppressWarnings("unchecked") EstimatedMeasurement<RangeRate> evaluation = (EstimatedMeasurement<RangeRate>) entry.getValue();
rangeRateLog.add(evaluation);
} else if (entry.getKey() instanceof AngularAzEl) {
@SuppressWarnings("unchecked") EstimatedMeasurement<AngularAzEl> evaluation = (EstimatedMeasurement<AngularAzEl>) entry.getValue();
azimuthLog.add(evaluation);
elevationLog.add(evaluation);
} else if (entry.getKey() instanceof PV) {
@SuppressWarnings("unchecked") EstimatedMeasurement<PV> evaluation = (EstimatedMeasurement<PV>) entry.getValue();
positionLog.add(evaluation);
velocityLog.add(evaluation);
}
}
System.out.println("Estimated orbit: " + estimated);
if (logStream != null) {
logStream.println("Estimated orbit: " + estimated);
}
final ParameterDriversList orbitalParameters = estimator.getOrbitalParametersDrivers(true);
final ParameterDriversList propagatorParameters = estimator.getPropagatorParametersDrivers(true);
final ParameterDriversList measurementsParameters = estimator.getMeasurementsParametersDrivers(true);
int length = 0;
for (final ParameterDriver parameterDriver : orbitalParameters.getDrivers()) {
length = FastMath.max(length, parameterDriver.getName().length());
}
for (final ParameterDriver parameterDriver : propagatorParameters.getDrivers()) {
length = FastMath.max(length, parameterDriver.getName().length());
}
for (final ParameterDriver parameterDriver : measurementsParameters.getDrivers()) {
length = FastMath.max(length, parameterDriver.getName().length());
}
displayParametersChanges(System.out, "Estimated orbital parameters changes: ", false, length, orbitalParameters);
if (logStream != null) {
displayParametersChanges(logStream, "Estimated orbital parameters changes: ", false, length, orbitalParameters);
}
displayParametersChanges(System.out, "Estimated propagator parameters changes: ", true, length, propagatorParameters);
if (logStream != null) {
displayParametersChanges(logStream, "Estimated propagator parameters changes: ", true, length, propagatorParameters);
}
displayParametersChanges(System.out, "Estimated measurements parameters changes: ", true, length, measurementsParameters);
if (logStream != null) {
displayParametersChanges(logStream, "Estimated measurements parameters changes: ", true, length, measurementsParameters);
}
System.out.println("Number of iterations: " + estimator.getIterationsCount());
System.out.println("Number of evaluations: " + estimator.getEvaluationsCount());
rangeLog.displaySummary(System.out);
rangeRateLog.displaySummary(System.out);
azimuthLog.displaySummary(System.out);
elevationLog.displaySummary(System.out);
positionLog.displaySummary(System.out);
velocityLog.displaySummary(System.out);
if (logStream != null) {
logStream.println("Number of iterations: " + estimator.getIterationsCount());
logStream.println("Number of evaluations: " + estimator.getEvaluationsCount());
rangeLog.displaySummary(logStream);
rangeRateLog.displaySummary(logStream);
azimuthLog.displaySummary(logStream);
elevationLog.displaySummary(logStream);
positionLog.displaySummary(logStream);
velocityLog.displaySummary(logStream);
}
rangeLog.displayResiduals();
rangeRateLog.displayResiduals();
azimuthLog.displayResiduals();
elevationLog.displayResiduals();
positionLog.displayResiduals();
velocityLog.displayResiduals();
} finally {
if (logStream != null) {
logStream.close();
}
rangeLog.close();
rangeRateLog.close();
azimuthLog.close();
elevationLog.close();
positionLog.close();
velocityLog.close();
}
}
use of org.orekit.estimation.leastsquares.BatchLSEstimator in project Orekit by CS-SI.
the class GroundStationTest method testEstimateEOP.
@Test
public void testEstimateEOP() throws OrekitException {
Context linearEOPContext = EstimationTestUtils.eccentricContext("linear-EOP:regular-data/de431-ephemerides:potential:tides");
final AbsoluteDate refDate = new AbsoluteDate(2000, 2, 24, linearEOPContext.utc);
final double dut10 = 0.3079738;
final double lod = 0.0011000;
final double xp0 = 68450.0e-6;
final double xpDot = -50.0e-6;
final double yp0 = 60.0e-6;
final double ypDot = 2.0e-6;
for (double dt = -2 * Constants.JULIAN_DAY; dt < 2 * Constants.JULIAN_DAY; dt += 300.0) {
AbsoluteDate date = refDate.shiftedBy(dt);
Assert.assertEquals(dut10 - dt * lod / Constants.JULIAN_DAY, linearEOPContext.ut1.getEOPHistory().getUT1MinusUTC(date), 1.0e-15);
Assert.assertEquals(lod, linearEOPContext.ut1.getEOPHistory().getLOD(date), 1.0e-15);
Assert.assertEquals((xp0 + xpDot * dt / Constants.JULIAN_DAY) * Constants.ARC_SECONDS_TO_RADIANS, linearEOPContext.ut1.getEOPHistory().getPoleCorrection(date).getXp(), 1.0e-15);
Assert.assertEquals((yp0 + ypDot * dt / Constants.JULIAN_DAY) * Constants.ARC_SECONDS_TO_RADIANS, linearEOPContext.ut1.getEOPHistory().getPoleCorrection(date).getYp(), 1.0e-15);
}
final NumericalPropagatorBuilder linearPropagatorBuilder = linearEOPContext.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// create perfect range measurements
final Propagator propagator = EstimationTestUtils.createPropagator(linearEOPContext.initialOrbit, linearPropagatorBuilder);
final List<ObservedMeasurement<?>> linearMeasurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(linearEOPContext), 1.0, 5.0, 60.0);
Utils.clearFactories();
Context zeroEOPContext = EstimationTestUtils.eccentricContext("zero-EOP:regular-data/de431-ephemerides:potential:potential:tides");
for (double dt = -2 * Constants.JULIAN_DAY; dt < 2 * Constants.JULIAN_DAY; dt += 300.0) {
AbsoluteDate date = refDate.shiftedBy(dt);
Assert.assertEquals(0.0, zeroEOPContext.ut1.getEOPHistory().getUT1MinusUTC(date), 1.0e-15);
Assert.assertEquals(0.0, zeroEOPContext.ut1.getEOPHistory().getLOD(date), 1.0e-15);
Assert.assertEquals(0.0, zeroEOPContext.ut1.getEOPHistory().getPoleCorrection(date).getXp(), 1.0e-15);
Assert.assertEquals(0.0, zeroEOPContext.ut1.getEOPHistory().getPoleCorrection(date).getYp(), 1.0e-15);
}
// create orbit estimator
final NumericalPropagatorBuilder zeroPropagatorBuilder = linearEOPContext.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), zeroPropagatorBuilder);
for (final ObservedMeasurement<?> linearMeasurement : linearMeasurements) {
Range linearRange = (Range) linearMeasurement;
for (final GroundStation station : zeroEOPContext.stations) {
if (station.getBaseFrame().getName().equals(linearRange.getStation().getBaseFrame().getName())) {
Range zeroRange = new Range(station, linearRange.getDate(), linearRange.getObservedValue()[0], linearRange.getTheoreticalStandardDeviation()[0], linearRange.getBaseWeight()[0]);
estimator.addMeasurement(zeroRange);
}
}
}
estimator.setParametersConvergenceThreshold(1.0e-3);
estimator.setMaxIterations(100);
estimator.setMaxEvaluations(200);
// we want to estimate pole and prime meridian
GroundStation station = zeroEOPContext.stations.get(0);
station.getPrimeMeridianOffsetDriver().setReferenceDate(refDate);
station.getPrimeMeridianOffsetDriver().setSelected(true);
station.getPrimeMeridianDriftDriver().setSelected(true);
station.getPolarOffsetXDriver().setReferenceDate(refDate);
station.getPolarOffsetXDriver().setSelected(true);
station.getPolarDriftXDriver().setSelected(true);
station.getPolarOffsetYDriver().setReferenceDate(refDate);
station.getPolarOffsetYDriver().setSelected(true);
station.getPolarDriftYDriver().setSelected(true);
// just for the fun and to speed up test, we will use orbit determination, *without* estimating orbit
for (final ParameterDriver driver : zeroPropagatorBuilder.getOrbitalParametersDrivers().getDrivers()) {
driver.setSelected(false);
}
estimator.estimate();
final double computedDut1 = station.getPrimeMeridianOffsetDriver().getValue() / EstimatedEarthFrameProvider.EARTH_ANGULAR_VELOCITY;
final double computedLOD = station.getPrimeMeridianDriftDriver().getValue() * (-Constants.JULIAN_DAY / EstimatedEarthFrameProvider.EARTH_ANGULAR_VELOCITY);
final double computedXp = station.getPolarOffsetXDriver().getValue() / Constants.ARC_SECONDS_TO_RADIANS;
final double computedXpDot = station.getPolarDriftXDriver().getValue() / Constants.ARC_SECONDS_TO_RADIANS * Constants.JULIAN_DAY;
final double computedYp = station.getPolarOffsetYDriver().getValue() / Constants.ARC_SECONDS_TO_RADIANS;
final double computedYpDot = station.getPolarDriftYDriver().getValue() / Constants.ARC_SECONDS_TO_RADIANS * Constants.JULIAN_DAY;
Assert.assertEquals(dut10, computedDut1, 4.3e-10);
Assert.assertEquals(lod, computedLOD, 4.9e-10);
Assert.assertEquals(xp0, computedXp, 5.6e-9);
Assert.assertEquals(xpDot, computedXpDot, 7.2e-9);
Assert.assertEquals(yp0, computedYp, 1.1e-9);
Assert.assertEquals(ypDot, computedYpDot, 2.8e-11);
// thresholds to use if orbit is estimated
// (i.e. when commenting out the loop above that sets orbital parameters drivers to "not selected")
// Assert.assertEquals(dut10, computedDut1, 6.6e-3);
// Assert.assertEquals(lod, computedLOD, 1.1e-9);
// Assert.assertEquals(xp0, computedXp, 3.3e-8);
// Assert.assertEquals(xpDot, computedXpDot, 2.2e-8);
// Assert.assertEquals(yp0, computedYp, 3.3e-8);
// Assert.assertEquals(ypDot, computedYpDot, 3.8e-8);
}
Aggregations