use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class TopocentricFrameTest method testDoppler.
@Test
public void testDoppler() throws OrekitException {
// Surface point at latitude 45, longitude 5
final GeodeticPoint point = new GeodeticPoint(FastMath.toRadians(45.), FastMath.toRadians(5.), 0.);
final TopocentricFrame topoFrame = new TopocentricFrame(earthSpheric, point, "lon 5 lat 45");
// Point at 30 deg longitude
// ***************************
final CircularOrbit orbit = new CircularOrbit(7178000.0, 0.5e-8, -0.5e-8, FastMath.toRadians(50.), FastMath.toRadians(120.), FastMath.toRadians(90.), PositionAngle.MEAN, FramesFactory.getEME2000(), date, mu);
// Transform satellite position to position/velocity parameters in body frame
final Transform eme2000ToItrf = FramesFactory.getEME2000().getTransformTo(earthSpheric.getBodyFrame(), date);
final PVCoordinates pvSatItrf = eme2000ToItrf.transformPVCoordinates(orbit.getPVCoordinates());
// Compute range rate directly
// ********************************************
final double dop = topoFrame.getRangeRate(pvSatItrf, earthSpheric.getBodyFrame(), date);
// Compare to finite difference computation (2 points)
// *****************************************************
final double dt = 0.1;
KeplerianPropagator extrapolator = new KeplerianPropagator(orbit);
// Extrapolate satellite position a short while after reference date
AbsoluteDate dateP = date.shiftedBy(dt);
Transform j2000ToItrfP = FramesFactory.getEME2000().getTransformTo(earthSpheric.getBodyFrame(), dateP);
SpacecraftState orbitP = extrapolator.propagate(dateP);
Vector3D satPointGeoP = j2000ToItrfP.transformPVCoordinates(orbitP.getPVCoordinates()).getPosition();
// Retropolate satellite position a short while before reference date
AbsoluteDate dateM = date.shiftedBy(-dt);
Transform j2000ToItrfM = FramesFactory.getEME2000().getTransformTo(earthSpheric.getBodyFrame(), dateM);
SpacecraftState orbitM = extrapolator.propagate(dateM);
Vector3D satPointGeoM = j2000ToItrfM.transformPVCoordinates(orbitM.getPVCoordinates()).getPosition();
// Compute ranges at both instants
double rangeP = topoFrame.getRange(satPointGeoP, earthSpheric.getBodyFrame(), dateP);
double rangeM = topoFrame.getRange(satPointGeoM, earthSpheric.getBodyFrame(), dateM);
final double dopRef2 = (rangeP - rangeM) / (2. * dt);
Assert.assertEquals(dopRef2, dop, 1.e-3);
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class AlongTrackAimingTest method setUp.
@Before
public void setUp() throws OrekitException {
Utils.setDataRoot("regular-data");
orbit = new CircularOrbit(7178000.0, 0.5e-4, -0.5e-4, FastMath.toRadians(50.), FastMath.toRadians(270.), FastMath.toRadians(5.300), PositionAngle.MEAN, FramesFactory.getEME2000(), new AbsoluteDate(2008, 4, 7, 0, 0, 0, TimeScalesFactory.getUTC()), Constants.EIGEN5C_EARTH_MU);
ellipsoid = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class EcksteinHechlerPropagatorTest method testInitializationCorrectness.
@Test
public void testInitializationCorrectness() throws OrekitException, IOException {
// Definition of initial conditions
AbsoluteDate date = AbsoluteDate.J2000_EPOCH.shiftedBy(154.);
Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
Frame eme2000 = FramesFactory.getEME2000();
Vector3D pole = itrf.getTransformTo(eme2000, date).transformVector(Vector3D.PLUS_K);
Frame poleAligned = new Frame(FramesFactory.getEME2000(), new Transform(date, new Rotation(pole, Vector3D.PLUS_K)), "pole aligned", true);
CircularOrbit initial = new CircularOrbit(7208669.8179538045, 1.3740461966386876E-4, -3.2364250248363356E-5, FastMath.toRadians(97.40236024565775), FastMath.toRadians(166.15873160992115), FastMath.toRadians(90.1282370098961), PositionAngle.MEAN, poleAligned, date, provider.getMu());
// find the default Eckstein-Hechler propagator initialized from the initial orbit
EcksteinHechlerPropagator defaultEH = new EcksteinHechlerPropagator(initial, provider);
// the osculating parameters recomputed by the default Eckstein-Hechler propagator are quite different
// from initial orbit
CircularOrbit defaultOrbit = (CircularOrbit) OrbitType.CIRCULAR.convertType(defaultEH.propagateOrbit(initial.getDate()));
Assert.assertEquals(267.4, defaultOrbit.getA() - initial.getA(), 0.1);
// the position on the other hand match perfectly
Assert.assertEquals(0.0, Vector3D.distance(defaultOrbit.getPVCoordinates().getPosition(), initial.getPVCoordinates().getPosition()), 1.0e-8);
// set up a reference numerical propagator starting for the specified start orbit
// using the same force models (i.e. the first few zonal terms)
double[][] tol = NumericalPropagator.tolerances(0.1, initial, OrbitType.CIRCULAR);
AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(0.001, 1000, tol[0], tol[1]);
integrator.setInitialStepSize(60);
NumericalPropagator num = new NumericalPropagator(integrator);
num.addForceModel(new HolmesFeatherstoneAttractionModel(itrf, GravityFieldFactory.getNormalizedProvider(provider)));
num.setInitialState(new SpacecraftState(initial));
num.setOrbitType(OrbitType.CIRCULAR);
// find the best Eckstein-Hechler propagator that match the orbit evolution
PropagatorConverter converter = new FiniteDifferencePropagatorConverter(new EcksteinHechlerPropagatorBuilder(initial, provider, PositionAngle.TRUE, 1.0), 1.0e-6, 100);
EcksteinHechlerPropagator fittedEH = (EcksteinHechlerPropagator) converter.convert(num, 3 * initial.getKeplerianPeriod(), 300);
// the default Eckstein-Hechler propagator did however quite a good job, as it found
// an orbit close to the best fitting
CircularOrbit fittedOrbit = (CircularOrbit) OrbitType.CIRCULAR.convertType(fittedEH.propagateOrbit(initial.getDate()));
Assert.assertEquals(0.623, defaultOrbit.getA() - fittedOrbit.getA(), 0.1);
// the position on the other hand are slightly different
// because the fitted orbit minimizes the residuals over a complete time span,
// not on a single point
Assert.assertEquals(58.0, Vector3D.distance(defaultOrbit.getPVCoordinates().getPosition(), fittedOrbit.getPVCoordinates().getPosition()), 0.1);
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class EcksteinHechlerPropagatorTest method equatorialOrbit.
@Test(expected = OrekitException.class)
public void equatorialOrbit() throws OrekitException {
AbsoluteDate initDate = AbsoluteDate.J2000_EPOCH;
Orbit initialOrbit = new CircularOrbit(7000000, 1.0e-4, -1.5e-4, 0.0, 1.2, 2.3, PositionAngle.MEAN, FramesFactory.getEME2000(), initDate, provider.getMu());
// Extrapolator definition
// -----------------------
EcksteinHechlerPropagator extrapolator = new EcksteinHechlerPropagator(initialOrbit, provider);
// Extrapolation at the initial date
// ---------------------------------
double delta_t = 0.0;
AbsoluteDate extrapDate = initDate.shiftedBy(delta_t);
extrapolator.propagate(extrapDate);
}
use of org.orekit.orbits.CircularOrbit in project Orekit by CS-SI.
the class EcksteinHechlerPropagatorTest method testIssue223.
@Test
public void testIssue223() throws OrekitException, IOException, ClassNotFoundException {
// Definition of initial conditions
AbsoluteDate date = AbsoluteDate.J2000_EPOCH.shiftedBy(154.);
Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
Frame eme2000 = FramesFactory.getEME2000();
Vector3D pole = itrf.getTransformTo(eme2000, date).transformVector(Vector3D.PLUS_K);
Frame poleAligned = new Frame(FramesFactory.getEME2000(), new Transform(date, new Rotation(pole, Vector3D.PLUS_K)), "pole aligned", true);
CircularOrbit initial = new CircularOrbit(7208669.8179538045, 1.3740461966386876E-4, -3.2364250248363356E-5, FastMath.toRadians(97.40236024565775), FastMath.toRadians(166.15873160992115), FastMath.toRadians(90.1282370098961), PositionAngle.MEAN, poleAligned, date, provider.getMu());
EcksteinHechlerPropagator propagator = new EcksteinHechlerPropagator(initial, provider);
propagator.addAdditionalStateProvider(new SevenProvider());
propagator.setEphemerisMode();
propagator.propagate(initial.getDate().shiftedBy(40000));
BoundedPropagator ephemeris = propagator.getGeneratedEphemeris();
Assert.assertSame(poleAligned, ephemeris.getFrame());
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
oos.writeObject(ephemeris);
Assert.assertTrue(bos.size() > 2450);
Assert.assertTrue(bos.size() < 2550);
ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bis);
BoundedPropagator deserialized = (BoundedPropagator) ois.readObject();
Assert.assertEquals(initial.getA(), deserialized.getInitialState().getA(), 1.0e-10);
Assert.assertEquals(initial.getEquinoctialEx(), deserialized.getInitialState().getEquinoctialEx(), 1.0e-10);
SpacecraftState s = deserialized.propagate(initial.getDate().shiftedBy(20000));
Map<String, double[]> additional = s.getAdditionalStates();
Assert.assertEquals(1, additional.size());
Assert.assertEquals(1, additional.get("seven").length);
Assert.assertEquals(7, additional.get("seven")[0], 1.0e-15);
}
Aggregations