use of org.orekit.propagation.conversion.EcksteinHechlerPropagatorBuilder in project Orekit by CS-SI.
the class EcksteinHechlerPropagatorTest method testInitializationCorrectness.
@Test
public void testInitializationCorrectness() throws OrekitException, IOException {
// Definition of initial conditions
AbsoluteDate date = AbsoluteDate.J2000_EPOCH.shiftedBy(154.);
Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
Frame eme2000 = FramesFactory.getEME2000();
Vector3D pole = itrf.getTransformTo(eme2000, date).transformVector(Vector3D.PLUS_K);
Frame poleAligned = new Frame(FramesFactory.getEME2000(), new Transform(date, new Rotation(pole, Vector3D.PLUS_K)), "pole aligned", true);
CircularOrbit initial = new CircularOrbit(7208669.8179538045, 1.3740461966386876E-4, -3.2364250248363356E-5, FastMath.toRadians(97.40236024565775), FastMath.toRadians(166.15873160992115), FastMath.toRadians(90.1282370098961), PositionAngle.MEAN, poleAligned, date, provider.getMu());
// find the default Eckstein-Hechler propagator initialized from the initial orbit
EcksteinHechlerPropagator defaultEH = new EcksteinHechlerPropagator(initial, provider);
// the osculating parameters recomputed by the default Eckstein-Hechler propagator are quite different
// from initial orbit
CircularOrbit defaultOrbit = (CircularOrbit) OrbitType.CIRCULAR.convertType(defaultEH.propagateOrbit(initial.getDate()));
Assert.assertEquals(267.4, defaultOrbit.getA() - initial.getA(), 0.1);
// the position on the other hand match perfectly
Assert.assertEquals(0.0, Vector3D.distance(defaultOrbit.getPVCoordinates().getPosition(), initial.getPVCoordinates().getPosition()), 1.0e-8);
// set up a reference numerical propagator starting for the specified start orbit
// using the same force models (i.e. the first few zonal terms)
double[][] tol = NumericalPropagator.tolerances(0.1, initial, OrbitType.CIRCULAR);
AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(0.001, 1000, tol[0], tol[1]);
integrator.setInitialStepSize(60);
NumericalPropagator num = new NumericalPropagator(integrator);
num.addForceModel(new HolmesFeatherstoneAttractionModel(itrf, GravityFieldFactory.getNormalizedProvider(provider)));
num.setInitialState(new SpacecraftState(initial));
num.setOrbitType(OrbitType.CIRCULAR);
// find the best Eckstein-Hechler propagator that match the orbit evolution
PropagatorConverter converter = new FiniteDifferencePropagatorConverter(new EcksteinHechlerPropagatorBuilder(initial, provider, PositionAngle.TRUE, 1.0), 1.0e-6, 100);
EcksteinHechlerPropagator fittedEH = (EcksteinHechlerPropagator) converter.convert(num, 3 * initial.getKeplerianPeriod(), 300);
// the default Eckstein-Hechler propagator did however quite a good job, as it found
// an orbit close to the best fitting
CircularOrbit fittedOrbit = (CircularOrbit) OrbitType.CIRCULAR.convertType(fittedEH.propagateOrbit(initial.getDate()));
Assert.assertEquals(0.623, defaultOrbit.getA() - fittedOrbit.getA(), 0.1);
// the position on the other hand are slightly different
// because the fitted orbit minimizes the residuals over a complete time span,
// not on a single point
Assert.assertEquals(58.0, Vector3D.distance(defaultOrbit.getPVCoordinates().getPosition(), fittedOrbit.getPVCoordinates().getPosition()), 0.1);
}
Aggregations