use of org.hipparchus.geometry.euclidean.threed.FieldRotation in project Orekit by CS-SI.
the class EstimationTestUtils method geoStationnaryContext.
public static Context geoStationnaryContext(final String dataRoot) throws OrekitException {
Utils.setDataRoot(dataRoot);
Context context = new Context();
context.conventions = IERSConventions.IERS_2010;
context.utc = TimeScalesFactory.getUTC();
context.ut1 = TimeScalesFactory.getUT1(context.conventions, true);
context.displacements = new StationDisplacement[0];
String Myframename = "MyEarthFrame";
final AbsoluteDate datedef = new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc);
final double omega = Constants.WGS84_EARTH_ANGULAR_VELOCITY;
final Vector3D rotationRate = new Vector3D(0.0, 0.0, omega);
TransformProvider MyEarthFrame = new TransformProvider() {
private static final long serialVersionUID = 1L;
public Transform getTransform(final AbsoluteDate date) {
final double rotationduration = date.durationFrom(datedef);
final Vector3D alpharot = new Vector3D(rotationduration, rotationRate);
final Rotation rotation = new Rotation(Vector3D.PLUS_K, -alpharot.getZ(), RotationConvention.VECTOR_OPERATOR);
return new Transform(date, rotation, rotationRate);
}
public <T extends RealFieldElement<T>> FieldTransform<T> getTransform(final FieldAbsoluteDate<T> date) {
final T rotationduration = date.durationFrom(datedef);
final FieldVector3D<T> alpharot = new FieldVector3D<>(rotationduration, rotationRate);
final FieldRotation<T> rotation = new FieldRotation<>(FieldVector3D.getPlusK(date.getField()), alpharot.getZ().negate(), RotationConvention.VECTOR_OPERATOR);
return new FieldTransform<>(date, rotation, new FieldVector3D<>(date.getField(), rotationRate));
}
};
Frame FrameTest = new Frame(FramesFactory.getEME2000(), MyEarthFrame, Myframename, true);
// Earth is spherical, rotating in one sidereal day
context.earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, 0.0, FrameTest);
context.sun = CelestialBodyFactory.getSun();
context.moon = CelestialBodyFactory.getMoon();
context.radiationSensitive = new IsotropicRadiationClassicalConvention(2.0, 0.2, 0.8);
context.dragSensitive = new IsotropicDrag(2.0, 1.2);
GravityFieldFactory.addPotentialCoefficientsReader(new GRGSFormatReader("grim4s4_gr", true));
AstronomicalAmplitudeReader aaReader = new AstronomicalAmplitudeReader("hf-fes2004.dat", 5, 2, 3, 1.0);
DataProvidersManager.getInstance().feed(aaReader.getSupportedNames(), aaReader);
Map<Integer, Double> map = aaReader.getAstronomicalAmplitudesMap();
GravityFieldFactory.addOceanTidesReader(new FESCHatEpsilonReader("fes2004-7x7.dat", 0.01, FastMath.toRadians(1.0), OceanLoadDeformationCoefficients.IERS_2010, map));
context.gravity = GravityFieldFactory.getNormalizedProvider(20, 20);
// semimajor axis for a geostationnary satellite
double da = FastMath.cbrt(context.gravity.getMu() / (omega * omega));
// context.stations = Arrays.asList(context.createStation( 0.0, 0.0, 0.0, "Lat0_Long0"),
// context.createStation( 62.29639, -7.01250, 880.0, "Slættaratindur")
// );
context.stations = Arrays.asList(context.createStation(0.0, 0.0, 0.0, "Lat0_Long0"));
// Station position & velocity in EME2000
final Vector3D geovelocity = new Vector3D(0., 0., 0.);
// Compute the frames transformation from station frame to EME2000
Transform topoToEME = context.stations.get(0).getBaseFrame().getTransformTo(FramesFactory.getEME2000(), new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc));
// Station position in EME2000 at reference date
Vector3D stationPositionEME = topoToEME.transformPosition(Vector3D.ZERO);
// Satellite position and velocity in Station Frame
final Vector3D sat_pos = new Vector3D(0., 0., da - stationPositionEME.getNorm());
final Vector3D acceleration = new Vector3D(-context.gravity.getMu(), sat_pos);
final PVCoordinates pv_sat_topo = new PVCoordinates(sat_pos, geovelocity, acceleration);
// satellite position in EME2000
final PVCoordinates pv_sat_iner = topoToEME.transformPVCoordinates(pv_sat_topo);
// Geo-stationary Satellite Orbit, tightly above the station (l0-L0)
context.initialOrbit = new KeplerianOrbit(pv_sat_iner, FramesFactory.getEME2000(), new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc), context.gravity.getMu());
context.stations = Arrays.asList(context.createStation(10.0, 45.0, 0.0, "Lat10_Long45"));
// Turn-around range stations
// Map entry = master station
// Map value = slave station associated
context.TARstations = new HashMap<GroundStation, GroundStation>();
context.TARstations.put(context.createStation(41.977, 13.600, 671.354, "Fucino"), context.createStation(43.604, 1.444, 263.0, "Toulouse"));
context.TARstations.put(context.createStation(49.867, 8.65, 144.0, "Darmstadt"), context.createStation(-25.885, 27.707, 1566.633, "Pretoria"));
return context;
}
use of org.hipparchus.geometry.euclidean.threed.FieldRotation in project Orekit by CS-SI.
the class FixedRateTest method doTestNonZeroRate.
private <T extends RealFieldElement<T>> void doTestNonZeroRate(final Field<T> field) throws OrekitException {
final T zero = field.getZero();
FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(field, new DateComponents(2004, 3, 2), new TimeComponents(13, 17, 7.865), TimeScalesFactory.getUTC());
final T rate = zero.add(2 * FastMath.PI / (12 * 60));
final Frame frame = FramesFactory.getEME2000();
FixedRate law = new FixedRate(new Attitude(date.toAbsoluteDate(), frame, new Rotation(0.48, 0.64, 0.36, 0.48, false), new Vector3D(rate.getReal(), Vector3D.PLUS_K), Vector3D.ZERO));
FieldPVCoordinates<T> pv = new FieldPVCoordinates<>(field.getOne(), new PVCoordinates(new Vector3D(28812595.32012577, 5948437.4640250085, 0), new Vector3D(0, 0, 3680.853673522056)));
FieldOrbit<T> orbit = new FieldKeplerianOrbit<>(pv, FramesFactory.getEME2000(), date, 3.986004415e14);
FieldRotation<T> attitude0 = law.getAttitude(orbit, date, frame).getRotation();
Assert.assertEquals(0, Rotation.distance(attitude0.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
FieldRotation<T> attitude1 = law.getAttitude(orbit.shiftedBy(zero.add(10.0)), date.shiftedBy(10.0), frame).getRotation();
Assert.assertEquals(10 * rate.getReal(), Rotation.distance(attitude1.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
FieldRotation<T> attitude2 = law.getAttitude(orbit.shiftedBy(zero.add(-20.0)), date.shiftedBy(-20.0), frame).getRotation();
Assert.assertEquals(20 * rate.getReal(), Rotation.distance(attitude2.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
Assert.assertEquals(30 * rate.getReal(), Rotation.distance(attitude2.toRotation(), attitude1.toRotation()), 1.0e-10);
FieldRotation<T> attitude3 = law.getAttitude(orbit.shiftedBy(zero.add(0.0)), date, frame).getRotation();
Assert.assertEquals(0, Rotation.distance(attitude3.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
}
use of org.hipparchus.geometry.euclidean.threed.FieldRotation in project Orekit by CS-SI.
the class FixedRateTest method doTestZeroRate.
private <T extends RealFieldElement<T>> void doTestZeroRate(final Field<T> field) throws OrekitException {
final T zero = field.getZero();
FieldAbsoluteDate<T> date = new FieldAbsoluteDate<>(field, new DateComponents(2004, 3, 2), new TimeComponents(13, 17, 7.865), TimeScalesFactory.getUTC());
final Frame frame = FramesFactory.getEME2000();
FixedRate law = new FixedRate(new Attitude(date.toAbsoluteDate(), frame, new Rotation(0.48, 0.64, 0.36, 0.48, false), Vector3D.ZERO, Vector3D.ZERO));
FieldPVCoordinates<T> pv = new FieldPVCoordinates<>(field.getOne(), new PVCoordinates(new Vector3D(28812595.32012577, 5948437.4640250085, 0), new Vector3D(0, 0, 3680.853673522056)));
FieldOrbit<T> orbit = new FieldKeplerianOrbit<>(pv, frame, date, 3.986004415e14);
FieldRotation<T> attitude0 = law.getAttitude(orbit, date, frame).getRotation();
Assert.assertEquals(0, Rotation.distance(attitude0.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
FieldRotation<T> attitude1 = law.getAttitude(orbit.shiftedBy(zero.add(10.0)), date.shiftedBy(10.0), frame).getRotation();
Assert.assertEquals(0, Rotation.distance(attitude1.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
FieldRotation<T> attitude2 = law.getAttitude(orbit.shiftedBy(zero.add(20.0)), date.shiftedBy(20.0), frame).getRotation();
Assert.assertEquals(0, Rotation.distance(attitude2.toRotation(), law.getReferenceAttitude().getRotation()), 1.0e-10);
}
use of org.hipparchus.geometry.euclidean.threed.FieldRotation in project Orekit by CS-SI.
the class AbstractForceModelTest method checkStateJacobianVsFiniteDifferences.
protected void checkStateJacobianVsFiniteDifferences(final SpacecraftState state0, final ForceModel forceModel, final AttitudeProvider provider, final double dP, final double checkTolerance, final boolean print) throws OrekitException {
double[][] finiteDifferencesJacobian = Differentiation.differentiate(state -> forceModel.acceleration(state, forceModel.getParameters()).toArray(), 3, provider, OrbitType.CARTESIAN, PositionAngle.MEAN, dP, 5).value(state0);
DSFactory factory = new DSFactory(6, 1);
Field<DerivativeStructure> field = factory.getDerivativeField();
final FieldAbsoluteDate<DerivativeStructure> fDate = new FieldAbsoluteDate<>(field, state0.getDate());
final Vector3D p = state0.getPVCoordinates().getPosition();
final Vector3D v = state0.getPVCoordinates().getVelocity();
final Vector3D a = state0.getPVCoordinates().getAcceleration();
final TimeStampedFieldPVCoordinates<DerivativeStructure> fPVA = new TimeStampedFieldPVCoordinates<>(fDate, new FieldVector3D<>(factory.variable(0, p.getX()), factory.variable(1, p.getY()), factory.variable(2, p.getZ())), new FieldVector3D<>(factory.variable(3, v.getX()), factory.variable(4, v.getY()), factory.variable(5, v.getZ())), new FieldVector3D<>(factory.constant(a.getX()), factory.constant(a.getY()), factory.constant(a.getZ())));
final TimeStampedFieldAngularCoordinates<DerivativeStructure> fAC = new TimeStampedFieldAngularCoordinates<>(fDate, new FieldRotation<>(field, state0.getAttitude().getRotation()), new FieldVector3D<>(field, state0.getAttitude().getSpin()), new FieldVector3D<>(field, state0.getAttitude().getRotationAcceleration()));
final FieldSpacecraftState<DerivativeStructure> fState = new FieldSpacecraftState<>(new FieldCartesianOrbit<>(fPVA, state0.getFrame(), state0.getMu()), new FieldAttitude<>(state0.getFrame(), fAC), field.getZero().add(state0.getMass()));
FieldVector3D<DerivativeStructure> dsJacobian = forceModel.acceleration(fState, forceModel.getParameters(fState.getDate().getField()));
Vector3D dFdPXRef = new Vector3D(finiteDifferencesJacobian[0][0], finiteDifferencesJacobian[1][0], finiteDifferencesJacobian[2][0]);
Vector3D dFdPXRes = new Vector3D(dsJacobian.getX().getPartialDerivative(1, 0, 0, 0, 0, 0), dsJacobian.getY().getPartialDerivative(1, 0, 0, 0, 0, 0), dsJacobian.getZ().getPartialDerivative(1, 0, 0, 0, 0, 0));
Vector3D dFdPYRef = new Vector3D(finiteDifferencesJacobian[0][1], finiteDifferencesJacobian[1][1], finiteDifferencesJacobian[2][1]);
Vector3D dFdPYRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 1, 0, 0, 0, 0), dsJacobian.getY().getPartialDerivative(0, 1, 0, 0, 0, 0), dsJacobian.getZ().getPartialDerivative(0, 1, 0, 0, 0, 0));
Vector3D dFdPZRef = new Vector3D(finiteDifferencesJacobian[0][2], finiteDifferencesJacobian[1][2], finiteDifferencesJacobian[2][2]);
Vector3D dFdPZRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 1, 0, 0, 0), dsJacobian.getY().getPartialDerivative(0, 0, 1, 0, 0, 0), dsJacobian.getZ().getPartialDerivative(0, 0, 1, 0, 0, 0));
Vector3D dFdVXRef = new Vector3D(finiteDifferencesJacobian[0][3], finiteDifferencesJacobian[1][3], finiteDifferencesJacobian[2][3]);
Vector3D dFdVXRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 0, 1, 0, 0), dsJacobian.getY().getPartialDerivative(0, 0, 0, 1, 0, 0), dsJacobian.getZ().getPartialDerivative(0, 0, 0, 1, 0, 0));
Vector3D dFdVYRef = new Vector3D(finiteDifferencesJacobian[0][4], finiteDifferencesJacobian[1][4], finiteDifferencesJacobian[2][4]);
Vector3D dFdVYRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 0, 0, 1, 0), dsJacobian.getY().getPartialDerivative(0, 0, 0, 0, 1, 0), dsJacobian.getZ().getPartialDerivative(0, 0, 0, 0, 1, 0));
Vector3D dFdVZRef = new Vector3D(finiteDifferencesJacobian[0][5], finiteDifferencesJacobian[1][5], finiteDifferencesJacobian[2][5]);
Vector3D dFdVZRes = new Vector3D(dsJacobian.getX().getPartialDerivative(0, 0, 0, 0, 0, 1), dsJacobian.getY().getPartialDerivative(0, 0, 0, 0, 0, 1), dsJacobian.getZ().getPartialDerivative(0, 0, 0, 0, 0, 1));
if (print) {
System.out.println("dF/dPX ref: " + dFdPXRef.getX() + " " + dFdPXRef.getY() + " " + dFdPXRef.getZ());
System.out.println("dF/dPX res: " + dFdPXRes.getX() + " " + dFdPXRes.getY() + " " + dFdPXRes.getZ());
System.out.println("dF/dPY ref: " + dFdPYRef.getX() + " " + dFdPYRef.getY() + " " + dFdPYRef.getZ());
System.out.println("dF/dPY res: " + dFdPYRes.getX() + " " + dFdPYRes.getY() + " " + dFdPYRes.getZ());
System.out.println("dF/dPZ ref: " + dFdPZRef.getX() + " " + dFdPZRef.getY() + " " + dFdPZRef.getZ());
System.out.println("dF/dPZ res: " + dFdPZRes.getX() + " " + dFdPZRes.getY() + " " + dFdPZRes.getZ());
System.out.println("dF/dPX ref norm: " + dFdPXRef.getNorm() + ", abs error: " + Vector3D.distance(dFdPXRef, dFdPXRes) + ", rel error: " + (Vector3D.distance(dFdPXRef, dFdPXRes) / dFdPXRef.getNorm()));
System.out.println("dF/dPY ref norm: " + dFdPYRef.getNorm() + ", abs error: " + Vector3D.distance(dFdPYRef, dFdPYRes) + ", rel error: " + (Vector3D.distance(dFdPYRef, dFdPYRes) / dFdPYRef.getNorm()));
System.out.println("dF/dPZ ref norm: " + dFdPZRef.getNorm() + ", abs error: " + Vector3D.distance(dFdPZRef, dFdPZRes) + ", rel error: " + (Vector3D.distance(dFdPZRef, dFdPZRes) / dFdPZRef.getNorm()));
System.out.println("dF/dVX ref norm: " + dFdVXRef.getNorm() + ", abs error: " + Vector3D.distance(dFdVXRef, dFdVXRes) + ", rel error: " + (Vector3D.distance(dFdVXRef, dFdVXRes) / dFdVXRef.getNorm()));
System.out.println("dF/dVY ref norm: " + dFdVYRef.getNorm() + ", abs error: " + Vector3D.distance(dFdVYRef, dFdVYRes) + ", rel error: " + (Vector3D.distance(dFdVYRef, dFdVYRes) / dFdVYRef.getNorm()));
System.out.println("dF/dVZ ref norm: " + dFdVZRef.getNorm() + ", abs error: " + Vector3D.distance(dFdVZRef, dFdVZRes) + ", rel error: " + (Vector3D.distance(dFdVZRef, dFdVZRes) / dFdVZRef.getNorm()));
}
checkdFdP(dFdPXRef, dFdPXRes, checkTolerance);
checkdFdP(dFdPYRef, dFdPYRes, checkTolerance);
checkdFdP(dFdPZRef, dFdPZRes, checkTolerance);
checkdFdP(dFdVXRef, dFdVXRes, checkTolerance);
checkdFdP(dFdVYRef, dFdVYRes, checkTolerance);
checkdFdP(dFdVZRef, dFdVZRes, checkTolerance);
}
use of org.hipparchus.geometry.euclidean.threed.FieldRotation in project Orekit by CS-SI.
the class GroundStation method getOffsetToInertial.
/**
* Get the transform between offset frame and inertial frame with derivatives.
* <p>
* As the East and North vector are not well defined at pole, the derivatives
* of these two vectors diverge to infinity as we get closer to the pole.
* So this method should not be used for stations less than 0.0001 degree from
* either poles.
* </p>
* @param inertial inertial frame to transform to
* @param date date of the transform
* @param factory factory for the derivatives
* @param indices indices of the estimated parameters in derivatives computations
* @return offset frame defining vectors with derivatives
* @exception OrekitException if some frame transforms cannot be computed
* @since 9.0
*/
public FieldTransform<DerivativeStructure> getOffsetToInertial(final Frame inertial, final FieldAbsoluteDate<DerivativeStructure> date, final DSFactory factory, final Map<String, Integer> indices) throws OrekitException {
final Field<DerivativeStructure> field = date.getField();
final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
final FieldVector3D<DerivativeStructure> plusI = FieldVector3D.getPlusI(field);
final FieldVector3D<DerivativeStructure> plusK = FieldVector3D.getPlusK(field);
// take Earth offsets into account
final FieldTransform<DerivativeStructure> intermediateToBody = estimatedEarthFrameProvider.getTransform(date, factory, indices).getInverse();
// take station offset into account
final DerivativeStructure x = parametricModel(factory, eastOffsetDriver, indices);
final DerivativeStructure y = parametricModel(factory, northOffsetDriver, indices);
final DerivativeStructure z = parametricModel(factory, zenithOffsetDriver, indices);
final BodyShape baseShape = baseFrame.getParentShape();
final Transform baseToBody = baseFrame.getTransformTo(baseShape.getBodyFrame(), (AbsoluteDate) null);
FieldVector3D<DerivativeStructure> origin = baseToBody.transformPosition(new FieldVector3D<>(x, y, z));
origin = origin.add(computeDisplacement(date.toAbsoluteDate(), origin.toVector3D()));
final FieldGeodeticPoint<DerivativeStructure> originGP = baseShape.transform(origin, baseShape.getBodyFrame(), date);
final FieldTransform<DerivativeStructure> offsetToIntermediate = new FieldTransform<>(date, new FieldTransform<>(date, new FieldRotation<>(plusI, plusK, originGP.getEast(), originGP.getZenith()), zero), new FieldTransform<>(date, origin));
// combine all transforms together
final FieldTransform<DerivativeStructure> bodyToInert = baseFrame.getParent().getTransformTo(inertial, date);
return new FieldTransform<>(date, offsetToIntermediate, new FieldTransform<>(date, intermediateToBody, bodyToInert));
}
Aggregations