use of org.orekit.forces.radiation.IsotropicRadiationClassicalConvention in project Orekit by CS-SI.
the class EstimationTestUtils method geoStationnaryContext.
public static Context geoStationnaryContext(final String dataRoot) throws OrekitException {
Utils.setDataRoot(dataRoot);
Context context = new Context();
context.conventions = IERSConventions.IERS_2010;
context.utc = TimeScalesFactory.getUTC();
context.ut1 = TimeScalesFactory.getUT1(context.conventions, true);
context.displacements = new StationDisplacement[0];
String Myframename = "MyEarthFrame";
final AbsoluteDate datedef = new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc);
final double omega = Constants.WGS84_EARTH_ANGULAR_VELOCITY;
final Vector3D rotationRate = new Vector3D(0.0, 0.0, omega);
TransformProvider MyEarthFrame = new TransformProvider() {
private static final long serialVersionUID = 1L;
public Transform getTransform(final AbsoluteDate date) {
final double rotationduration = date.durationFrom(datedef);
final Vector3D alpharot = new Vector3D(rotationduration, rotationRate);
final Rotation rotation = new Rotation(Vector3D.PLUS_K, -alpharot.getZ(), RotationConvention.VECTOR_OPERATOR);
return new Transform(date, rotation, rotationRate);
}
public <T extends RealFieldElement<T>> FieldTransform<T> getTransform(final FieldAbsoluteDate<T> date) {
final T rotationduration = date.durationFrom(datedef);
final FieldVector3D<T> alpharot = new FieldVector3D<>(rotationduration, rotationRate);
final FieldRotation<T> rotation = new FieldRotation<>(FieldVector3D.getPlusK(date.getField()), alpharot.getZ().negate(), RotationConvention.VECTOR_OPERATOR);
return new FieldTransform<>(date, rotation, new FieldVector3D<>(date.getField(), rotationRate));
}
};
Frame FrameTest = new Frame(FramesFactory.getEME2000(), MyEarthFrame, Myframename, true);
// Earth is spherical, rotating in one sidereal day
context.earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, 0.0, FrameTest);
context.sun = CelestialBodyFactory.getSun();
context.moon = CelestialBodyFactory.getMoon();
context.radiationSensitive = new IsotropicRadiationClassicalConvention(2.0, 0.2, 0.8);
context.dragSensitive = new IsotropicDrag(2.0, 1.2);
GravityFieldFactory.addPotentialCoefficientsReader(new GRGSFormatReader("grim4s4_gr", true));
AstronomicalAmplitudeReader aaReader = new AstronomicalAmplitudeReader("hf-fes2004.dat", 5, 2, 3, 1.0);
DataProvidersManager.getInstance().feed(aaReader.getSupportedNames(), aaReader);
Map<Integer, Double> map = aaReader.getAstronomicalAmplitudesMap();
GravityFieldFactory.addOceanTidesReader(new FESCHatEpsilonReader("fes2004-7x7.dat", 0.01, FastMath.toRadians(1.0), OceanLoadDeformationCoefficients.IERS_2010, map));
context.gravity = GravityFieldFactory.getNormalizedProvider(20, 20);
// semimajor axis for a geostationnary satellite
double da = FastMath.cbrt(context.gravity.getMu() / (omega * omega));
// context.stations = Arrays.asList(context.createStation( 0.0, 0.0, 0.0, "Lat0_Long0"),
// context.createStation( 62.29639, -7.01250, 880.0, "Slættaratindur")
// );
context.stations = Arrays.asList(context.createStation(0.0, 0.0, 0.0, "Lat0_Long0"));
// Station position & velocity in EME2000
final Vector3D geovelocity = new Vector3D(0., 0., 0.);
// Compute the frames transformation from station frame to EME2000
Transform topoToEME = context.stations.get(0).getBaseFrame().getTransformTo(FramesFactory.getEME2000(), new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc));
// Station position in EME2000 at reference date
Vector3D stationPositionEME = topoToEME.transformPosition(Vector3D.ZERO);
// Satellite position and velocity in Station Frame
final Vector3D sat_pos = new Vector3D(0., 0., da - stationPositionEME.getNorm());
final Vector3D acceleration = new Vector3D(-context.gravity.getMu(), sat_pos);
final PVCoordinates pv_sat_topo = new PVCoordinates(sat_pos, geovelocity, acceleration);
// satellite position in EME2000
final PVCoordinates pv_sat_iner = topoToEME.transformPVCoordinates(pv_sat_topo);
// Geo-stationary Satellite Orbit, tightly above the station (l0-L0)
context.initialOrbit = new KeplerianOrbit(pv_sat_iner, FramesFactory.getEME2000(), new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc), context.gravity.getMu());
context.stations = Arrays.asList(context.createStation(10.0, 45.0, 0.0, "Lat10_Long45"));
// Turn-around range stations
// Map entry = master station
// Map value = slave station associated
context.TARstations = new HashMap<GroundStation, GroundStation>();
context.TARstations.put(context.createStation(41.977, 13.600, 671.354, "Fucino"), context.createStation(43.604, 1.444, 263.0, "Toulouse"));
context.TARstations.put(context.createStation(49.867, 8.65, 144.0, "Darmstadt"), context.createStation(-25.885, 27.707, 1566.633, "Pretoria"));
return context;
}
use of org.orekit.forces.radiation.IsotropicRadiationClassicalConvention in project Orekit by CS-SI.
the class EstimationTestUtils method eccentricContext.
public static Context eccentricContext(final String dataRoot) throws OrekitException {
Utils.setDataRoot(dataRoot);
Context context = new Context();
context.conventions = IERSConventions.IERS_2010;
context.earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(context.conventions, true));
context.sun = CelestialBodyFactory.getSun();
context.moon = CelestialBodyFactory.getMoon();
context.radiationSensitive = new IsotropicRadiationClassicalConvention(2.0, 0.2, 0.8);
context.dragSensitive = new IsotropicDrag(2.0, 1.2);
final EOPHistory eopHistory = FramesFactory.getEOPHistory(context.conventions, true);
context.utc = TimeScalesFactory.getUTC();
context.ut1 = TimeScalesFactory.getUT1(eopHistory);
context.displacements = new StationDisplacement[] { new TidalDisplacement(Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS, Constants.JPL_SSD_SUN_EARTH_PLUS_MOON_MASS_RATIO, Constants.JPL_SSD_EARTH_MOON_MASS_RATIO, context.sun, context.moon, context.conventions, false) };
GravityFieldFactory.addPotentialCoefficientsReader(new GRGSFormatReader("grim4s4_gr", true));
AstronomicalAmplitudeReader aaReader = new AstronomicalAmplitudeReader("hf-fes2004.dat", 5, 2, 3, 1.0);
DataProvidersManager.getInstance().feed(aaReader.getSupportedNames(), aaReader);
Map<Integer, Double> map = aaReader.getAstronomicalAmplitudesMap();
GravityFieldFactory.addOceanTidesReader(new FESCHatEpsilonReader("fes2004-7x7.dat", 0.01, FastMath.toRadians(1.0), OceanLoadDeformationCoefficients.IERS_2010, map));
context.gravity = GravityFieldFactory.getNormalizedProvider(20, 20);
context.initialOrbit = new KeplerianOrbit(15000000.0, 0.125, 1.25, 0.250, 1.375, 0.0625, PositionAngle.TRUE, FramesFactory.getEME2000(), new AbsoluteDate(2000, 2, 24, 11, 35, 47.0, context.utc), context.gravity.getMu());
context.stations = // context.createStation(-18.59146, -173.98363, 76.0, "Leimatu`a"),
Arrays.asList(context.createStation(-53.05388, -75.01551, 1750.0, "Isla Desolación"), context.createStation(62.29639, -7.01250, 880.0, "Slættaratindur"));
// Turn-around range stations
// Map entry = master station
// Map value = slave station associated
context.TARstations = new HashMap<GroundStation, GroundStation>();
context.TARstations.put(context.createStation(-53.05388, -75.01551, 1750.0, "Isla Desolación"), context.createStation(-54.815833, -68.317778, 6.0, "Ushuaïa"));
context.TARstations.put(context.createStation(62.29639, -7.01250, 880.0, "Slættaratindur"), context.createStation(61.405833, -6.705278, 470.0, "Sumba"));
return context;
}
Aggregations