use of org.knime.base.node.mine.treeensemble2.data.BinaryNominalSplitsPCA.CombinedAttributeValues in project knime-core by knime.
the class TreeNominalColumnData method calcBestSplitClassificationBinaryPCA.
/**
* Implements the approach proposed by Coppersmith et al. (1999) in their paper
* "Partitioning Nominal Attributes in Decision Trees"
*
* @param membershipController
* @param rowWeights
* @param targetPriors
* @param targetColumn
* @param impCriterion
* @param nomVals
* @param targetVals
* @param originalIndexInColumnList
* @return the best binary split candidate or null if there is no valid split with positive gain
*/
private NominalBinarySplitCandidate calcBestSplitClassificationBinaryPCA(final ColumnMemberships columnMemberships, final ClassificationPriors targetPriors, final TreeTargetNominalColumnData targetColumn, final IImpurity impCriterion, final NominalValueRepresentation[] nomVals, final NominalValueRepresentation[] targetVals, final RandomData rd) {
final TreeEnsembleLearnerConfiguration config = getConfiguration();
final int minChildSize = config.getMinChildSize();
final boolean useXGBoostMissingValueHandling = config.getMissingValueHandling() == MissingValueHandling.XGBoost;
// The algorithm combines attribute values with the same class probabilities into a single attribute
// therefore it is necessary to track the known classProbabilities
final LinkedHashMap<ClassProbabilityVector, CombinedAttributeValues> combinedAttValsMap = new LinkedHashMap<ClassProbabilityVector, CombinedAttributeValues>();
columnMemberships.next();
double totalWeight = 0.0;
boolean branchContainsMissingValues = containsMissingValues();
int start = 0;
final int lengthNonMissing = containsMissingValues() ? nomVals.length - 1 : nomVals.length;
final int attToConsider = useXGBoostMissingValueHandling ? nomVals.length : lengthNonMissing;
for (int att = 0; att < lengthNonMissing; /*attToConsider*/
att++) {
int end = start + m_nominalValueCounts[att];
double attWeight = 0.0;
final double[] classFrequencies = new double[targetVals.length];
boolean reachedEnd = false;
for (int index = columnMemberships.getIndexInColumn(); index < end; index = columnMemberships.getIndexInColumn()) {
double weight = columnMemberships.getRowWeight();
assert weight > EPSILON : "Instances in columnMemberships must have weights larger than EPSILON.";
int instanceClass = targetColumn.getValueFor(columnMemberships.getOriginalIndex());
classFrequencies[instanceClass] += weight;
attWeight += weight;
totalWeight += weight;
if (!columnMemberships.next()) {
// reached end of columnMemberships
reachedEnd = true;
if (att == nomVals.length - 1) {
// if the column contains no missing values, the last possible nominal value is
// not the missing value and therefore branchContainsMissingValues needs to be false
branchContainsMissingValues = branchContainsMissingValues && true;
}
break;
}
}
start = end;
if (attWeight < EPSILON) {
// attribute value did not occur in this branch or sample
continue;
}
final double[] classProbabilities = new double[targetVals.length];
for (int i = 0; i < classProbabilities.length; i++) {
classProbabilities[i] = truncateDouble(8, classFrequencies[i] / attWeight);
}
CombinedAttributeValues attVal = new CombinedAttributeValues(classFrequencies, classProbabilities, attWeight, nomVals[att]);
ClassProbabilityVector classProbabilityVector = new ClassProbabilityVector(classProbabilities);
CombinedAttributeValues knownAttVal = combinedAttValsMap.get(classProbabilityVector);
if (knownAttVal == null) {
combinedAttValsMap.put(classProbabilityVector, attVal);
} else {
knownAttVal.combineAttributeValues(attVal);
}
if (reachedEnd) {
break;
}
}
// account for missing values and their weight
double missingWeight = 0.0;
double[] missingClassCounts = null;
// otherwise the current indexInColumn won't be larger than start
if (columnMemberships.getIndexInColumn() >= start) {
missingClassCounts = new double[targetVals.length];
do {
final double recordWeight = columnMemberships.getRowWeight();
final int recordClass = targetColumn.getValueFor(columnMemberships.getOriginalIndex());
missingWeight += recordWeight;
missingClassCounts[recordClass] += recordWeight;
} while (columnMemberships.next());
}
if (missingWeight > EPSILON) {
branchContainsMissingValues = true;
} else {
branchContainsMissingValues = false;
}
ArrayList<CombinedAttributeValues> attValList = Lists.newArrayList(combinedAttValsMap.values());
CombinedAttributeValues[] attVals = combinedAttValsMap.values().toArray(new CombinedAttributeValues[combinedAttValsMap.size()]);
attVals = BinaryNominalSplitsPCA.calculatePCAOrdering(attVals, totalWeight, targetVals.length);
// EigenDecomposition failed
if (attVals == null) {
return null;
}
// Start searching for split candidates
final int highestBitPosition = containsMissingValues() ? nomVals.length - 2 : nomVals.length - 1;
final double[] binaryImpurityValues = new double[2];
final double[] binaryPartitionWeights = new double[2];
double sumRemainingWeights = totalWeight;
double sumCurrPartitionWeight = 0.0;
RealVector targetFrequenciesCurrentPartition = MatrixUtils.createRealVector(new double[targetVals.length]);
RealVector targetFrequenciesRemaining = MatrixUtils.createRealVector(new double[targetVals.length]);
for (CombinedAttributeValues attVal : attValList) {
targetFrequenciesRemaining = targetFrequenciesRemaining.add(attVal.m_classFrequencyVector);
}
BigInteger currPartitionBitMask = BigInteger.ZERO;
double bestPartitionGain = Double.NEGATIVE_INFINITY;
BigInteger bestPartitionMask = null;
boolean isBestSplitValid = false;
boolean missingsGoLeft = false;
final double priorImpurity = useXGBoostMissingValueHandling ? targetPriors.getPriorImpurity() : impCriterion.getPartitionImpurity(subtractMissingClassCounts(targetPriors.getDistribution(), missingClassCounts), totalWeight);
// no need to iterate over full list because at least one value must remain on the other side of the split
for (int i = 0; i < attVals.length - 1; i++) {
CombinedAttributeValues currAttVal = attVals[i];
sumCurrPartitionWeight += currAttVal.m_totalWeight;
sumRemainingWeights -= currAttVal.m_totalWeight;
assert sumCurrPartitionWeight + sumRemainingWeights == totalWeight : "The weights of the partitions do not sum up to the total weight.";
targetFrequenciesCurrentPartition = targetFrequenciesCurrentPartition.add(currAttVal.m_classFrequencyVector);
targetFrequenciesRemaining = targetFrequenciesRemaining.subtract(currAttVal.m_classFrequencyVector);
currPartitionBitMask = currPartitionBitMask.or(currAttVal.m_bitMask);
boolean partitionIsRightBranch = currPartitionBitMask.testBit(highestBitPosition);
boolean isValidSplit;
double gain;
boolean tempMissingsGoLeft = true;
if (branchContainsMissingValues && useXGBoostMissingValueHandling) {
// send missing values with partition
boolean isValidSplitFirst = sumCurrPartitionWeight + missingWeight >= minChildSize && sumRemainingWeights >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(addMissingClassCounts(targetFrequenciesCurrentPartition.toArray(), missingClassCounts), sumCurrPartitionWeight + missingWeight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(targetFrequenciesRemaining.toArray(), sumRemainingWeights);
binaryPartitionWeights[0] = sumCurrPartitionWeight + missingWeight;
binaryPartitionWeights[1] = sumRemainingWeights;
double postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight + missingWeight);
double gainFirst = impCriterion.getGain(priorImpurity, postSplitImpurity, binaryPartitionWeights, totalWeight + missingWeight);
// send missing values with remaining
boolean isValidSplitSecond = sumCurrPartitionWeight >= minChildSize && sumRemainingWeights + missingWeight >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(targetFrequenciesCurrentPartition.toArray(), sumCurrPartitionWeight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(addMissingClassCounts(targetFrequenciesRemaining.toArray(), missingClassCounts), sumRemainingWeights + missingWeight);
binaryPartitionWeights[0] = sumCurrPartitionWeight;
binaryPartitionWeights[1] = sumRemainingWeights + missingWeight;
postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight + missingWeight);
double gainSecond = impCriterion.getGain(priorImpurity, postSplitImpurity, binaryPartitionWeights, totalWeight + missingWeight);
// choose alternative with better gain
if (gainFirst >= gainSecond) {
gain = gainFirst;
isValidSplit = isValidSplitFirst;
tempMissingsGoLeft = !partitionIsRightBranch;
} else {
gain = gainSecond;
isValidSplit = isValidSplitSecond;
tempMissingsGoLeft = partitionIsRightBranch;
}
} else {
// TODO if invalid splits should not be considered skip partition
isValidSplit = sumCurrPartitionWeight >= minChildSize && sumRemainingWeights >= minChildSize;
binaryImpurityValues[0] = impCriterion.getPartitionImpurity(targetFrequenciesCurrentPartition.toArray(), sumCurrPartitionWeight);
binaryImpurityValues[1] = impCriterion.getPartitionImpurity(targetFrequenciesRemaining.toArray(), sumRemainingWeights);
binaryPartitionWeights[0] = sumCurrPartitionWeight;
binaryPartitionWeights[1] = sumRemainingWeights;
double postSplitImpurity = impCriterion.getPostSplitImpurity(binaryImpurityValues, binaryPartitionWeights, totalWeight);
gain = impCriterion.getGain(priorImpurity, postSplitImpurity, binaryPartitionWeights, totalWeight);
}
// use random tie breaker if gains are equal
boolean randomTieBreaker = gain == bestPartitionGain ? rd.nextInt(0, 1) == 1 : false;
// store if better than before or first valid split
if (gain > bestPartitionGain || (!isBestSplitValid && isValidSplit) || randomTieBreaker) {
if (isValidSplit || !isBestSplitValid) {
bestPartitionGain = gain;
bestPartitionMask = partitionIsRightBranch ? currPartitionBitMask : BigInteger.ZERO.setBit(highestBitPosition + 1).subtract(BigInteger.ONE).xor(currPartitionBitMask);
isBestSplitValid = isValidSplit;
if (branchContainsMissingValues) {
missingsGoLeft = tempMissingsGoLeft;
// missing values are encountered during the search for the best split
// missingsGoLeft = partitionIsRightBranch;
} else {
// no missing values were encountered during the search for the best split
// missing values should be sent with the majority
missingsGoLeft = partitionIsRightBranch ? sumCurrPartitionWeight < sumRemainingWeights : sumCurrPartitionWeight >= sumRemainingWeights;
}
}
}
}
if (isBestSplitValid && bestPartitionGain > 0.0) {
if (useXGBoostMissingValueHandling) {
return new NominalBinarySplitCandidate(this, bestPartitionGain, bestPartitionMask, NO_MISSED_ROWS, missingsGoLeft ? NominalBinarySplitCandidate.MISSINGS_GO_LEFT : NominalBinarySplitCandidate.MISSINGS_GO_RIGHT);
}
return new NominalBinarySplitCandidate(this, bestPartitionGain, bestPartitionMask, getMissedRows(columnMemberships), NominalBinarySplitCandidate.NO_MISSINGS);
}
return null;
}
use of org.knime.base.node.mine.treeensemble2.data.BinaryNominalSplitsPCA.CombinedAttributeValues in project knime-core by knime.
the class BinaryNominalSplitsPCATest method testCalculateMeanClassProbabilityVector.
@Test
public void testCalculateMeanClassProbabilityVector() {
final CombinedAttributeValues[] attVals = createTestAttVals();
final double totalSumWeight = 300;
final int numTargetVals = 3;
final RealVector meanClassProbabilityVector = BinaryNominalSplitsPCA.calculateMeanClassProbabilityVector(attVals, totalSumWeight, numTargetVals);
final double aThird = 1.0 / 3.0;
final RealVector expectedMeanClassProbabilityVector = MatrixUtils.createRealVector(new double[] { aThird, aThird, aThird });
assertEquals(expectedMeanClassProbabilityVector, meanClassProbabilityVector);
}
use of org.knime.base.node.mine.treeensemble2.data.BinaryNominalSplitsPCA.CombinedAttributeValues in project knime-core by knime.
the class BinaryNominalSplitsPCATest method createTestAttVals.
private static CombinedAttributeValues[] createTestAttVals() {
CombinedAttributeValues[] attVals = new CombinedAttributeValues[5];
double[][] classFrequencies = new double[][] { { 40, 10, 10 }, { 10, 40, 10 }, { 20, 30, 10 }, { 20, 15, 25 }, { 10, 5, 45 } };
double[][] classProbabilities = new double[5][3];
double totalWeight = 60;
String[] nomValStrings = new String[] { "A", "B", "C", "D", "E" };
NominalValueRepresentation[] nomVals = new NominalValueRepresentation[5];
for (int i = 0; i < 5; i++) {
nomVals[i] = new NominalValueRepresentation(nomValStrings[i], i, totalWeight);
for (int j = 0; j < 3; j++) {
classProbabilities[i][j] = classFrequencies[i][j] / totalWeight;
}
}
for (int i = 0; i < 5; i++) {
attVals[i] = new CombinedAttributeValues(classFrequencies[i], classProbabilities[i], totalWeight, nomVals[i]);
}
return attVals;
}
use of org.knime.base.node.mine.treeensemble2.data.BinaryNominalSplitsPCA.CombinedAttributeValues in project knime-core by knime.
the class BinaryNominalSplitsPCATest method testCalculateWeightedCovarianceMatrix.
@Test
public void testCalculateWeightedCovarianceMatrix() {
final CombinedAttributeValues[] attVals = createTestAttVals();
final double totalSumWeight = 300;
final int numTargetVals = 3;
final RealVector meanClassProbabilityVector = BinaryNominalSplitsPCA.calculateMeanClassProbabilityVector(attVals, totalSumWeight, numTargetVals);
RealMatrix weightedCovarianceMatrix = BinaryNominalSplitsPCA.calculateWeightedCovarianceMatrix(attVals, meanClassProbabilityVector, totalSumWeight, numTargetVals);
// the reference matrix is altered to be easily readable therefore we have to do the same to the calculated matrix
weightedCovarianceMatrix = weightedCovarianceMatrix.scalarMultiply(1 / weightedCovarianceMatrix.getEntry(0, 0));
weightedCovarianceMatrix = weightedCovarianceMatrix.scalarMultiply(10);
final RealMatrix expectedWeightedCovarianceMatrix = MatrixUtils.createRealMatrix(new double[][] { { 10.0, -4.167, -5.833 }, { -4.167, 14.167, -10.0 }, { -5.833, -10.0, 15.833 } });
// RealMatrix does overwrite equals but all entries must be exactly the same for two matrices to be equal
// Therefore we need to use the asserEquals method that allows to define a delta
assertEquals(expectedWeightedCovarianceMatrix.getRowDimension(), weightedCovarianceMatrix.getRowDimension());
assertEquals(expectedWeightedCovarianceMatrix.getColumnDimension(), weightedCovarianceMatrix.getColumnDimension());
for (int r = 0; r < weightedCovarianceMatrix.getRowDimension(); r++) {
for (int c = 0; c < weightedCovarianceMatrix.getColumnDimension(); c++) {
assertEquals(expectedWeightedCovarianceMatrix.getEntry(r, c), weightedCovarianceMatrix.getEntry(r, c), 0.001);
}
}
}
Aggregations