use of org.knime.core.node.port.pmml.PMMLPortObject in project knime-core by knime.
the class LinReg2Learner method execute.
/**
* Compute linear regression model.
*
* @param portObjects The input objects.
* @param exec the execution context
* @return a {@link LinearRegressionContent} storing computed data
* @throws Exception if computation of the linear regression model is
* not successful or if given data is inconsistent with the settings
* defined in the constructor.
* @see LinReg2LearnerNodeModel#execute(PortObject[], ExecutionContext)
*/
public LinearRegressionContent execute(final PortObject[] portObjects, final ExecutionContext exec) throws Exception {
BufferedDataTable data = (BufferedDataTable) portObjects[0];
PMMLPortObject inPMMLPort = (PMMLPortObject) portObjects[1];
PMMLPortObjectSpec inPMMLSpec = inPMMLPort.getSpec();
init(data.getDataTableSpec(), inPMMLSpec, Collections.<String>emptySet());
double calcDomainTime = 0.2;
exec.setMessage("Analyzing categorical data");
BufferedDataTable dataTable = recalcDomainOfLearningFields(data, inPMMLSpec, exec.createSubExecutionContext(calcDomainTime));
exec.setMessage("Computing linear regression model");
return m_learner.perform(dataTable, exec.createSubExecutionContext(1.0 - calcDomainTime));
}
use of org.knime.core.node.port.pmml.PMMLPortObject in project knime-core by knime.
the class PolyRegLearnerNodeModel method createPMMLModel.
private PMMLPortObject createPMMLModel(final PMMLPortObject inPMMLPort, final DataTableSpec inSpec) throws InvalidSettingsException, SAXException {
NumericPredictor[] preds = new NumericPredictor[m_betas.length - 1];
int deg = m_settings.getDegree();
for (int i = 0; i < m_columnNames.length; i++) {
for (int k = 0; k < deg; k++) {
preds[i * deg + k] = new NumericPredictor(m_columnNames[i], k + 1, m_betas[i * deg + k + 1]);
}
}
RegressionTable tab = new RegressionTable(m_betas[0], preds);
PMMLPortObjectSpec pmmlSpec = null;
if (inPMMLPort != null) {
pmmlSpec = inPMMLPort.getSpec();
}
PMMLPortObjectSpec spec = createModelSpec(pmmlSpec, inSpec);
/* To maintain compatibility with the previous SAX-based implementation.
* */
String targetField = "Response";
List<String> targetFields = spec.getTargetFields();
if (!targetFields.isEmpty()) {
targetField = targetFields.get(0);
}
PMMLPortObject outPMMLPort = new PMMLPortObject(spec, inPMMLPort, inSpec);
PMMLRegressionTranslator trans = new PMMLRegressionTranslator("KNIME Polynomial Regression", "PolynomialRegression", tab, targetField);
outPMMLPort.addModelTranslater(trans);
return outPMMLPort;
}
use of org.knime.core.node.port.pmml.PMMLPortObject in project knime-core by knime.
the class SVMPredictorNodeModel method createStreamableOperator.
/**
* {@inheritDoc}
*/
@Override
public StreamableOperator createStreamableOperator(final PartitionInfo partitionInfo, final PortObjectSpec[] inSpecs) throws InvalidSettingsException {
return new StreamableOperator() {
@Override
public void runFinal(final PortInput[] inputs, final PortOutput[] outputs, final ExecutionContext exec) throws Exception {
PMMLPortObject pmmlModel = (PMMLPortObject) ((PortObjectInput) inputs[0]).getPortObject();
ColumnRearranger colre = createColumnRearranger(pmmlModel, (DataTableSpec) inSpecs[1]);
StreamableFunction func = colre.createStreamableFunction(1, 0);
func.runFinal(inputs, outputs, exec);
}
};
}
use of org.knime.core.node.port.pmml.PMMLPortObject in project knime-core by knime.
the class SVMPredictorNodeModel method execute.
/**
* {@inheritDoc}
*/
@Override
public PortObject[] execute(final PortObject[] inData, final ExecutionContext exec) throws Exception {
PMMLPortObject port = (PMMLPortObject) inData[0];
BufferedDataTable testData = (BufferedDataTable) inData[1];
ColumnRearranger colre = createColumnRearranger(port, testData.getDataTableSpec());
BufferedDataTable result = exec.createColumnRearrangeTable(testData, colre, exec);
return new BufferedDataTable[] { result };
}
use of org.knime.core.node.port.pmml.PMMLPortObject in project knime-core by knime.
the class RPropNodeModel method execute.
/**
* The execution consists of three steps:
* <ol>
* <li>A neural network is build with the inputs and outputs according to
* the input datatable, number of hidden layers as specified.</li>
* <li>Input DataTables are converted into double-arrays so they can be
* attached to the neural net.</li>
* <li>The neural net is trained.</li>
* </ol>
*
* {@inheritDoc}
*/
@Override
protected PortObject[] execute(final PortObject[] inData, final ExecutionContext exec) throws Exception {
// If class column is not set, it is the last column.
DataTableSpec posSpec = (DataTableSpec) inData[INDATA].getSpec();
if (m_classcol.getStringValue() == null) {
m_classcol.setStringValue(posSpec.getColumnSpec(posSpec.getNumColumns() - 1).getName());
}
List<String> learningCols = new LinkedList<String>();
List<String> targetCols = new LinkedList<String>();
// Determine the number of inputs and the number of outputs. Make also
// sure that the inputs are double values.
int nrInputs = 0;
int nrOutputs = 0;
HashMap<String, Integer> inputmap = new HashMap<String, Integer>();
HashMap<DataCell, Integer> classMap = new HashMap<DataCell, Integer>();
for (DataColumnSpec colspec : posSpec) {
// check for class column
if (colspec.getName().toString().compareTo(m_classcol.getStringValue()) == 0) {
targetCols.add(colspec.getName());
if (colspec.getType().isCompatible(DoubleValue.class)) {
// check if the values are in range [0,1]
DataColumnDomain domain = colspec.getDomain();
if (domain.hasBounds()) {
double lower = ((DoubleValue) domain.getLowerBound()).getDoubleValue();
double upper = ((DoubleValue) domain.getUpperBound()).getDoubleValue();
if (lower < 0 || upper > 1) {
throw new InvalidSettingsException("Domain range for regression in column " + colspec.getName() + " not in range [0,1]");
}
}
nrOutputs = 1;
classMap = new HashMap<DataCell, Integer>();
classMap.put(new StringCell(colspec.getName()), 0);
m_regression = true;
} else {
m_regression = false;
DataColumnDomain domain = colspec.getDomain();
if (domain.hasValues()) {
Set<DataCell> allvalues = domain.getValues();
int outputneuron = 0;
classMap = new HashMap<DataCell, Integer>();
for (DataCell value : allvalues) {
classMap.put(value, outputneuron);
outputneuron++;
}
nrOutputs = allvalues.size();
} else {
throw new Exception("Could not find domain values in" + "nominal column " + colspec.getName().toString());
}
}
} else {
if (!colspec.getType().isCompatible(DoubleValue.class)) {
throw new Exception("Only double columns for input");
}
inputmap.put(colspec.getName(), nrInputs);
learningCols.add(colspec.getName());
nrInputs++;
}
}
assert targetCols.size() == 1 : "Only one class column allowed.";
m_architecture.setNrInputNeurons(nrInputs);
m_architecture.setNrHiddenLayers(m_nrHiddenLayers.getIntValue());
m_architecture.setNrHiddenNeurons(m_nrHiddenNeuronsperLayer.getIntValue());
m_architecture.setNrOutputNeurons(nrOutputs);
Random random = new Random();
if (m_useRandomSeed.getBooleanValue()) {
random.setSeed(m_randomSeed.getIntValue());
}
m_mlp = new MultiLayerPerceptron(m_architecture, random);
if (m_regression) {
m_mlp.setMode(MultiLayerPerceptron.REGRESSION_MODE);
} else {
m_mlp.setMode(MultiLayerPerceptron.CLASSIFICATION_MODE);
}
// Convert inputs to double arrays. Values from the class column are
// encoded as bitvectors.
int classColNr = posSpec.findColumnIndex(m_classcol.getStringValue());
List<Double[]> samples = new ArrayList<Double[]>();
List<Double[]> outputs = new ArrayList<Double[]>();
Double[] sample = new Double[nrInputs];
Double[] output = new Double[nrOutputs];
final RowIterator rowIt = ((BufferedDataTable) inData[INDATA]).iterator();
int rowcounter = 0;
while (rowIt.hasNext()) {
boolean add = true;
output = new Double[nrOutputs];
sample = new Double[nrInputs];
DataRow row = rowIt.next();
int nrCells = row.getNumCells();
int index = 0;
for (int i = 0; i < nrCells; i++) {
if (i != classColNr) {
if (!row.getCell(i).isMissing()) {
DoubleValue dc = (DoubleValue) row.getCell(i);
sample[index] = dc.getDoubleValue();
index++;
} else {
if (m_ignoreMV.getBooleanValue()) {
add = false;
break;
} else {
throw new Exception("Missing values in input" + " datatable");
}
}
} else {
if (row.getCell(i).isMissing()) {
add = false;
if (!m_ignoreMV.getBooleanValue()) {
throw new Exception("Missing value in class" + " column");
}
break;
}
if (m_regression) {
DoubleValue dc = (DoubleValue) row.getCell(i);
output[0] = dc.getDoubleValue();
} else {
for (int j = 0; j < nrOutputs; j++) {
if (classMap.get(row.getCell(i)) == j) {
output[j] = new Double(1.0);
} else {
output[j] = new Double(0.0);
}
}
}
}
}
if (add) {
samples.add(sample);
outputs.add(output);
rowcounter++;
}
}
Double[][] samplesarr = new Double[rowcounter][nrInputs];
Double[][] outputsarr = new Double[rowcounter][nrInputs];
for (int i = 0; i < samplesarr.length; i++) {
samplesarr[i] = samples.get(i);
outputsarr[i] = outputs.get(i);
}
// Now finally train the network.
m_mlp.setClassMapping(classMap);
m_mlp.setInputMapping(inputmap);
RProp myrprop = new RProp();
m_errors = new double[m_nrIterations.getIntValue()];
for (int iteration = 0; iteration < m_nrIterations.getIntValue(); iteration++) {
exec.setProgress((double) iteration / (double) m_nrIterations.getIntValue(), "Iteration " + iteration);
myrprop.train(m_mlp, samplesarr, outputsarr);
double error = 0;
for (int j = 0; j < outputsarr.length; j++) {
double[] myoutput = m_mlp.output(samplesarr[j]);
for (int o = 0; o < outputsarr[0].length; o++) {
error += (myoutput[o] - outputsarr[j][o]) * (myoutput[o] - outputsarr[j][o]);
}
}
m_errors[iteration] = error;
exec.checkCanceled();
}
// handle the optional PMML input
PMMLPortObject inPMMLPort = m_pmmlInEnabled ? (PMMLPortObject) inData[INMODEL] : null;
PMMLPortObjectSpec inPMMLSpec = null;
if (inPMMLPort != null) {
inPMMLSpec = inPMMLPort.getSpec();
}
PMMLPortObjectSpec outPortSpec = createPMMLPortObjectSpec(inPMMLSpec, posSpec, learningCols, targetCols);
PMMLPortObject outPMMLPort = new PMMLPortObject(outPortSpec, inPMMLPort, posSpec);
outPMMLPort.addModelTranslater(new PMMLNeuralNetworkTranslator(m_mlp));
return new PortObject[] { outPMMLPort };
}
Aggregations