use of org.locationtech.geowave.core.index.sfc.RangeDecomposition in project geowave by locationtech.
the class HilbertSFCTest method testDecomposeQuery_2DSpatialOneIndexFilter.
@Test
public void testDecomposeQuery_2DSpatialOneIndexFilter() {
final int LATITUDE_BITS = 31;
final int LONGITUDE_BITS = 31;
final SFCDimensionDefinition[] SPATIAL_DIMENSIONS = new SFCDimensionDefinition[] { new SFCDimensionDefinition(new LongitudeDefinition(), LONGITUDE_BITS), new SFCDimensionDefinition(new LatitudeDefinition(), LATITUDE_BITS) };
final SpaceFillingCurve hilbertSFC = SFCFactory.createSpaceFillingCurve(SPATIAL_DIMENSIONS, SFCType.HILBERT);
// Create a IndexRange object using the x axis
final NumericRange rangeX = new NumericRange(55, 57);
// Create a IndexRange object using the y axis
final NumericRange rangeY = new NumericRange(25, 27);
final BasicNumericDataset spatialQuery = new BasicNumericDataset(new NumericData[] { rangeX, rangeY });
final RangeDecomposition rangeDecomposition = hilbertSFC.decomposeRange(spatialQuery, true, 1);
Assert.assertEquals(1, rangeDecomposition.getRanges().length);
}
use of org.locationtech.geowave.core.index.sfc.RangeDecomposition in project geowave by locationtech.
the class HilbertSFCTest method testDecomposeQuery_2DSpatialTwentyIndexFilters.
@Test
public void testDecomposeQuery_2DSpatialTwentyIndexFilters() {
final int LATITUDE_BITS = 31;
final int LONGITUDE_BITS = 31;
final SFCDimensionDefinition[] SPATIAL_DIMENSIONS = new SFCDimensionDefinition[] { new SFCDimensionDefinition(new LongitudeDefinition(), LONGITUDE_BITS), new SFCDimensionDefinition(new LatitudeDefinition(), LATITUDE_BITS) };
final SpaceFillingCurve hilbertSFC = SFCFactory.createSpaceFillingCurve(SPATIAL_DIMENSIONS, SFCType.HILBERT);
// Create a IndexRange object using the x axis
final NumericRange rangeX = new NumericRange(10, 57);
// Create a IndexRange object using the y axis
final NumericRange rangeY = new NumericRange(25, 50);
final BasicNumericDataset spatialQuery = new BasicNumericDataset(new NumericData[] { rangeX, rangeY });
final RangeDecomposition rangeDecomposition = hilbertSFC.decomposeRange(spatialQuery, true, 20);
Assert.assertEquals(20, rangeDecomposition.getRanges().length);
}
use of org.locationtech.geowave.core.index.sfc.RangeDecomposition in project geowave by locationtech.
the class PrimitiveHilbertSFCTest method testSpatialGetIdAndQueryDecomposition62BitsTotal.
@Test
public void testSpatialGetIdAndQueryDecomposition62BitsTotal() {
final SFCDimensionDefinition[] sfcDimensions = new SFCDimensionDefinition[SPATIAL_DIMENSIONS.length];
int totalPrecision = 0;
final List<Integer> bitsPerDimension = new ArrayList<>();
for (int d = 0; d < SPATIAL_DIMENSIONS.length; d++) {
final int bitsOfPrecision = 31;
sfcDimensions[d] = new SFCDimensionDefinition(SPATIAL_DIMENSIONS[d], bitsOfPrecision);
bitsPerDimension.add(bitsOfPrecision);
totalPrecision += bitsOfPrecision;
}
final CompactHilbertCurve compactHilbertCurve = new CompactHilbertCurve(new MultiDimensionalSpec(bitsPerDimension));
final PrimitiveHilbertSFCOperations testOperations = new PrimitiveHilbertSFCOperations();
// assume the unbounded SFC is the true results, regardless they should
// both produce the same results
final UnboundedHilbertSFCOperations expectedResultOperations = new UnboundedHilbertSFCOperations();
testOperations.init(sfcDimensions);
expectedResultOperations.init(sfcDimensions);
final Double[] testValues1 = new Double[] { 45d, 45d };
final Double[] testValues2 = new Double[] { 0d, 0d };
final Double[] testValues3 = new Double[] { -1.235456, -67.9213546 };
final Double[] testValues4 = new Double[] { -61.2354561024897435868943753568436598645436, 42.921354693742875894356895549054690704378590896 };
Assert.assertArrayEquals(expectedResultOperations.convertToHilbert(testValues1, compactHilbertCurve, sfcDimensions), testOperations.convertToHilbert(testValues1, compactHilbertCurve, sfcDimensions));
Assert.assertArrayEquals(expectedResultOperations.convertToHilbert(testValues2, compactHilbertCurve, sfcDimensions), testOperations.convertToHilbert(testValues2, compactHilbertCurve, sfcDimensions));
Assert.assertArrayEquals(expectedResultOperations.convertToHilbert(testValues3, compactHilbertCurve, sfcDimensions), testOperations.convertToHilbert(testValues3, compactHilbertCurve, sfcDimensions));
Assert.assertArrayEquals(expectedResultOperations.convertToHilbert(testValues4, compactHilbertCurve, sfcDimensions), testOperations.convertToHilbert(testValues4, compactHilbertCurve, sfcDimensions));
final NumericRange rangeLongitude1 = new NumericRange(0, 1);
final NumericRange rangeLatitude1 = new NumericRange(0, 1);
final NumericRange rangeLongitude2 = new NumericRange(-21.324967549, 28.4285637846834432543);
final NumericRange rangeLatitude2 = new NumericRange(-43.7894445665435346547657867847657654, 32.3254325834896543657895436543543659);
final NumericRange rangeLongitude3 = new NumericRange(-10, 0);
final NumericRange rangeLatitude3 = new NumericRange(-10, 0);
final NumericRange rangeLongitude4 = new NumericRange(-Double.MIN_VALUE, 0);
final NumericRange rangeLatitude4 = new NumericRange(0, Double.MIN_VALUE);
final RangeDecomposition expectedResult1 = expectedResultOperations.decomposeRange(new NumericData[] { rangeLongitude1, rangeLatitude1 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, true);
final RangeDecomposition testResult1 = testOperations.decomposeRange(new NumericData[] { rangeLongitude1, rangeLatitude1 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, true);
Assert.assertTrue(expectedResult1.getRanges().length == testResult1.getRanges().length);
for (int i = 0; i < expectedResult1.getRanges().length; i++) {
Assert.assertTrue(expectedResult1.getRanges()[i].equals(testResult1.getRanges()[i]));
}
final RangeDecomposition expectedResult2 = expectedResultOperations.decomposeRange(new NumericData[] { rangeLongitude2, rangeLatitude2 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, true);
final RangeDecomposition testResult2 = testOperations.decomposeRange(new NumericData[] { rangeLongitude2, rangeLatitude2 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, true);
Assert.assertTrue(expectedResult2.getRanges().length == testResult2.getRanges().length);
for (int i = 0; i < expectedResult2.getRanges().length; i++) {
Assert.assertTrue(expectedResult2.getRanges()[i].equals(testResult2.getRanges()[i]));
}
final RangeDecomposition expectedResult3 = expectedResultOperations.decomposeRange(new NumericData[] { rangeLongitude3, rangeLatitude3 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, false);
final RangeDecomposition testResult3 = testOperations.decomposeRange(new NumericData[] { rangeLongitude3, rangeLatitude3 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, false);
Assert.assertTrue(expectedResult3.getRanges().length == testResult3.getRanges().length);
for (int i = 0; i < expectedResult3.getRanges().length; i++) {
Assert.assertTrue(expectedResult3.getRanges()[i].equals(testResult3.getRanges()[i]));
}
final RangeDecomposition expectedResult4 = expectedResultOperations.decomposeRange(new NumericData[] { rangeLongitude4, rangeLatitude4 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, false);
final RangeDecomposition testResult4 = testOperations.decomposeRange(new NumericData[] { rangeLongitude4, rangeLatitude4 }, compactHilbertCurve, sfcDimensions, totalPrecision, Integer.MAX_VALUE, true, false);
Assert.assertTrue(expectedResult4.getRanges().length == testResult4.getRanges().length);
for (int i = 0; i < expectedResult4.getRanges().length; i++) {
Assert.assertTrue(expectedResult4.getRanges()[i].equals(testResult4.getRanges()[i]));
}
}
use of org.locationtech.geowave.core.index.sfc.RangeDecomposition in project geowave by locationtech.
the class BinnedSFCUtils method getQueryRanges.
public static List<SinglePartitionQueryRanges> getQueryRanges(final List<BinnedNumericDataset> binnedQueries, final SpaceFillingCurve sfc, final int maxRanges, final Byte tier) {
final List<SinglePartitionQueryRanges> queryRanges = new ArrayList<>();
int maxRangeDecompositionPerBin = maxRanges;
if ((maxRanges > 1) && (binnedQueries.size() > 1)) {
maxRangeDecompositionPerBin = (int) Math.ceil((double) maxRanges / (double) binnedQueries.size());
}
for (final BinnedNumericDataset binnedQuery : binnedQueries) {
final RangeDecomposition rangeDecomp = sfc.decomposeRange(binnedQuery, true, maxRangeDecompositionPerBin);
final byte[] tierAndBinId = tier != null ? ByteArrayUtils.combineArrays(new byte[] { tier // we're assuming tiers only go to 127 (the max byte
// value)
}, binnedQuery.getBinId()) : binnedQuery.getBinId();
queryRanges.add(new SinglePartitionQueryRanges(tierAndBinId, Arrays.asList(rangeDecomp.getRanges())));
}
return queryRanges;
}
use of org.locationtech.geowave.core.index.sfc.RangeDecomposition in project geowave by locationtech.
the class UnboundedHilbertSFCOperations method decomposeRange.
@Override
public RangeDecomposition decomposeRange(final NumericData[] rangePerDimension, final CompactHilbertCurve compactHilbertCurve, final SFCDimensionDefinition[] dimensionDefinitions, final int totalPrecision, final int maxFilteredIndexedRanges, final boolean removeVacuum, final boolean overInclusiveOnEdge) {
// List of query range minimum
// and
// maximum
// values
final List<BigInteger> minRangeList = new ArrayList<>();
final List<BigInteger> maxRangeList = new ArrayList<>();
final BigIntegerContent zero = new BigIntegerContent(BigInteger.valueOf(0L));
final List<BigIntegerRange> region = new ArrayList<>(dimensionDefinitions.length);
for (int d = 0; d < dimensionDefinitions.length; d++) {
final BigInteger normalizedMin = normalizeDimension(dimensionDefinitions[d], rangePerDimension[d].getMin(), binsPerDimension[d], true, overInclusiveOnEdge);
BigInteger normalizedMax = normalizeDimension(dimensionDefinitions[d], rangePerDimension[d].getMax(), binsPerDimension[d], false, overInclusiveOnEdge);
if (normalizedMin.compareTo(normalizedMax) > 0) {
// if they're both equal, which is possible because we treat max
// as exclusive, set bin max to bin min (ie. treat it as
// inclusive in this case)
normalizedMax = normalizedMin;
}
minRangeList.add(normalizedMin);
maxRangeList.add(normalizedMax);
region.add(BigIntegerRange.of(normalizedMin, normalizedMax.add(BigInteger.ONE)));
}
final BigInteger minQuadSize = getMinimumQuadSize(minRangeList, maxRangeList);
final RegionInspector<BigIntegerRange, BigIntegerContent> regionInspector = SimpleRegionInspector.create(ImmutableList.of(region), new BigIntegerContent(minQuadSize), Functions.<BigIntegerRange>identity(), BigIntegerRangeHome.INSTANCE, zero);
final PlainFilterCombiner<BigIntegerRange, BigInteger, BigIntegerContent, BigIntegerRange> intervalCombiner = new PlainFilterCombiner<>(BigIntegerRange.of(0, 1));
final QueryBuilder<BigIntegerRange, BigIntegerRange> queryBuilder = BacktrackingQueryBuilder.create(regionInspector, intervalCombiner, maxFilteredIndexedRanges, removeVacuum, BigIntegerRangeHome.INSTANCE, zero);
synchronized (compactHilbertCurve) {
compactHilbertCurve.accept(new ZoomingSpaceVisitorAdapter(compactHilbertCurve, queryBuilder));
}
// com.google.uzaygezen.core.Query<LongRange, LongRange> hilbertQuery =
// queryBuilder.get();
final List<FilteredIndexRange<BigIntegerRange, BigIntegerRange>> hilbertRanges = queryBuilder.get().getFilteredIndexRanges();
final ByteArrayRange[] sfcRanges = new ByteArrayRange[hilbertRanges.size()];
final int expectedByteCount = (int) Math.ceil(totalPrecision / 8.0);
if (expectedByteCount <= 0) {
// special case for no precision
return new RangeDecomposition(new ByteArrayRange[] { new ByteArrayRange(new byte[0], new byte[0]) });
}
for (int i = 0; i < hilbertRanges.size(); i++) {
final FilteredIndexRange<BigIntegerRange, BigIntegerRange> range = hilbertRanges.get(i);
// sanity check that values fit within the expected range
// it seems that uzaygezen can produce a value at 2^totalPrecision
// rather than 2^totalPrecision - 1
final BigInteger startValue = clamp(minHilbertValue, maxHilbertValue, range.getIndexRange().getStart());
final BigInteger endValue = clamp(minHilbertValue, maxHilbertValue, range.getIndexRange().getEnd().subtract(BigInteger.ONE));
// make sure its padded if necessary
final byte[] start = HilbertSFC.fitExpectedByteCount(expectedByteCount, startValue.toByteArray());
// make sure its padded if necessary
final byte[] end = HilbertSFC.fitExpectedByteCount(expectedByteCount, endValue.toByteArray());
sfcRanges[i] = new ByteArrayRange(start, end);
}
final RangeDecomposition rangeDecomposition = new RangeDecomposition(sfcRanges);
return rangeDecomposition;
}
Aggregations