Search in sources :

Example 1 with CartesianCS

use of org.opengis.referencing.cs.CartesianCS in project sis by apache.

the class DefaultImageCRSTest method testXML.

/**
 * Implementation of {@link #testCartesianXML()} and {@link #testAffineXML()}.
 */
private void testXML(final boolean cartesian) throws JAXBException {
    String expected = "<gml:ImageCRS xmlns:gml=\"" + Namespaces.GML + "\">\n" + "  <gml:name>An image CRS</gml:name>\n" + "  <gml:cartesianCS>\n" + "    <gml:CartesianCS gml:id=\"Grid\">\n" + "      <gml:name>Grid</gml:name>\n" + "      <gml:axis>\n" + "        <gml:CoordinateSystemAxis uom=\"urn:ogc:def:uom:EPSG::9201\" gml:id=\"Column\">\n" + "          <gml:name>Column</gml:name>\n" + "          <gml:axisAbbrev>i</gml:axisAbbrev>\n" + "          <gml:axisDirection codeSpace=\"EPSG\">columnPositive</gml:axisDirection>\n" + "        </gml:CoordinateSystemAxis>\n" + "      </gml:axis>\n" + "      <gml:axis>\n" + "        <gml:CoordinateSystemAxis uom=\"urn:ogc:def:uom:EPSG::9201\" gml:id=\"Row\">\n" + "          <gml:name>Row</gml:name>\n" + "          <gml:axisAbbrev>j</gml:axisAbbrev>\n" + "          <gml:axisDirection codeSpace=\"EPSG\">rowPositive</gml:axisDirection>\n" + "        </gml:CoordinateSystemAxis>\n" + "      </gml:axis>\n" + "    </gml:CartesianCS>\n" + "  </gml:cartesianCS>\n" + "  <gml:imageDatum>\n" + "    <gml:ImageDatum gml:id=\"C1\">\n" + "      <gml:name>C1</gml:name>\n" + "      <gml:pixelInCell>cell center</gml:pixelInCell>\n" + "    </gml:ImageDatum>\n" + "  </gml:imageDatum>\n" + "</gml:ImageCRS>";
    if (!cartesian) {
        expected = expected.replace("CartesianCS", "AffineCS").replace("cartesianCS", "affineCS");
    }
    final String xml = marshal(create(cartesian));
    assertXmlEquals(expected, xml, "xmlns:*");
    final DefaultImageCRS crs = unmarshal(DefaultImageCRS.class, xml);
    assertEquals("name", "An image CRS", crs.getName().getCode());
    assertEquals("datum.name", "C1", crs.getDatum().getName().getCode());
    final CoordinateSystem cs = crs.getCoordinateSystem();
    assertInstanceOf("coordinateSystem", cartesian ? CartesianCS.class : AffineCS.class, cs);
    assertEquals("cs.isCartesian", cartesian, cs instanceof CartesianCS);
    assertEquals("cs.name", "Grid", cs.getName().getCode());
    assertEquals("cs.dimension", 2, cs.getDimension());
    assertAxisDirectionsEqual("cartesianCS", cs, AxisDirection.COLUMN_POSITIVE, AxisDirection.ROW_POSITIVE);
    assertEquals("cs.axis[0].name", "Column", cs.getAxis(0).getName().getCode());
    assertEquals("cs.axis[1].name", "Row", cs.getAxis(1).getName().getCode());
    assertEquals("cs.axis[0].abbreviation", "i", cs.getAxis(0).getAbbreviation());
    assertEquals("cs.axis[1].abbreviation", "j", cs.getAxis(1).getAbbreviation());
}
Also used : CartesianCS(org.opengis.referencing.cs.CartesianCS) CoordinateSystem(org.opengis.referencing.cs.CoordinateSystem) AffineCS(org.opengis.referencing.cs.AffineCS) DefaultAffineCS(org.apache.sis.referencing.cs.DefaultAffineCS)

Example 2 with CartesianCS

use of org.opengis.referencing.cs.CartesianCS in project sis by apache.

the class DefaultGeodeticCRS method formatTo.

/**
 * Formats this CRS as a <cite>Well Known Text</cite> {@code GeodeticCRS[…]} element.
 * More information about the WKT format is documented in subclasses.
 *
 * @return {@code "GeodeticCRS"} (WKT 2) or {@code "GeogCS"}/{@code "GeocCS"} (WKT 1).
 */
@Override
protected String formatTo(final Formatter formatter) {
    WKTUtilities.appendName(this, formatter, null);
    CoordinateSystem cs = getCoordinateSystem();
    final Convention convention = formatter.getConvention();
    final boolean isWKT1 = (convention.majorVersion() == 1);
    final boolean isGeographicWKT1 = isWKT1 && (cs instanceof EllipsoidalCS);
    if (isGeographicWKT1 && cs.getDimension() == 3) {
        /*
             * Version 1 of WKT format did not have three-dimensional GeographicCRS. Instead, such CRS were formatted
             * as a CompoundCRS made of a two-dimensional GeographicCRS with a VerticalCRS for the ellipsoidal height.
             * Note that such compound is illegal in WKT 2 and ISO 19111 standard, as ellipsoidal height shall not be
             * separated from the geographic component. So we perform this separation only at WKT 1 formatting time.
             */
        SingleCRS first = CRS.getHorizontalComponent(this);
        SingleCRS second = CRS.getVerticalComponent(this, true);
        if (first != null && second != null) {
            // Should not be null, but we are paranoiac.
            if (AxisDirection.UP.equals(AxisDirections.absolute(cs.getAxis(0).getDirection()))) {
                // It is very unusual to have VerticalCRS first, but our code tries to be robust.
                final SingleCRS t = first;
                first = second;
                second = t;
            }
            formatter.newLine();
            formatter.append(WKTUtilities.toFormattable(first));
            formatter.newLine();
            formatter.append(WKTUtilities.toFormattable(second));
            formatter.newLine();
            return WKTKeywords.Compd_CS;
        }
    }
    /*
         * Unconditionally format the datum element, followed by the prime meridian.
         * The prime meridian is part of datum according ISO 19111, but is formatted
         * as a sibling (rather than a child) element in WKT for historical reasons.
         */
    // Gives subclasses a chance to override.
    final GeodeticDatum datum = getDatum();
    formatter.newLine();
    formatter.append(WKTUtilities.toFormattable(datum));
    formatter.newLine();
    final PrimeMeridian pm = datum.getPrimeMeridian();
    final Unit<Angle> angularUnit = AxisDirections.getAngularUnit(cs, null);
    if (// Really this specific enum, not Convention.isSimplified().
    convention != Convention.WKT2_SIMPLIFIED || ReferencingUtilities.getGreenwichLongitude(pm, Units.DEGREE) != 0) {
        final Unit<Angle> oldUnit = formatter.addContextualUnit(angularUnit);
        formatter.indent(1);
        formatter.append(WKTUtilities.toFormattable(pm));
        formatter.indent(-1);
        formatter.newLine();
        formatter.restoreContextualUnit(angularUnit, oldUnit);
    }
    /*
         * Get the coordinate system to format. This will also determine the units to write and the keyword to
         * return in WKT 1 format. Note that for the WKT 1 format, we need to replace the coordinate system by
         * an instance conform to the legacy conventions.
         *
         * We can not delegate the work below to subclasses,  because XML unmarshalling of a geodetic CRS will
         * NOT create an instance of a subclass (because the distinction between geographic and geocentric CRS
         * is not anymore in ISO 19111:2007).
         */
    final boolean isBaseCRS;
    if (isWKT1) {
        if (!isGeographicWKT1) {
            // If not geographic, then presumed geocentric.
            if (cs instanceof CartesianCS) {
                cs = Legacy.forGeocentricCRS((CartesianCS) cs, true);
            } else {
                // SphericalCS was not supported in WKT 1.
                formatter.setInvalidWKT(cs, null);
            }
        }
        isBaseCRS = false;
    } else {
        isBaseCRS = isBaseCRS(formatter);
    }
    /*
         * Format the coordinate system, except if this CRS is the base CRS of an AbstractDerivedCRS in WKT 2 format.
         * This is because ISO 19162 omits the coordinate system definition of enclosed base CRS in order to simplify
         * the WKT. The 'formatCS(…)' method may write axis unit before or after the axes depending on whether we are
         * formatting WKT version 1 or 2 respectively.
         *
         * Note that even if we do not format the CS, we may still write the units if we are formatting in "simplified"
         * mode (as opposed to the more verbose mode). This looks like the opposite of what we would expect, but this is
         * because formatting the unit here allow us to avoid repeating the unit in projection parameters when this CRS
         * is part of a ProjectedCRS. Note however that in such case, the units to format are the angular units because
         * the linear units will be formatted in the enclosing PROJCS[…] element.
         */
    if (!isBaseCRS || convention == Convention.INTERNAL) {
        // Will also format the axes unit.
        formatCS(formatter, cs, ReferencingUtilities.getUnit(cs), isWKT1);
    } else if (convention.isSimplified()) {
        formatter.append(formatter.toContextualUnit(angularUnit));
    }
    /*
         * For WKT 1, the keyword depends on the subclass: "GeogCS" for GeographicCRS or "GeocCS" for GeocentricCRS.
         * However we can not rely on the subclass for choosing the keyword, because after XML unmarhaling we only
         * have a GeodeticCRS. We need to make the choice in this base class. The CS type is a sufficient criterion.
         */
    if (isWKT1) {
        return isGeographicWKT1 ? WKTKeywords.GeogCS : WKTKeywords.GeocCS;
    } else {
        return isBaseCRS ? WKTKeywords.BaseGeodCRS : formatter.shortOrLong(WKTKeywords.GeodCRS, WKTKeywords.GeodeticCRS);
    }
}
Also used : SingleCRS(org.opengis.referencing.crs.SingleCRS) CartesianCS(org.opengis.referencing.cs.CartesianCS) Convention(org.apache.sis.io.wkt.Convention) Angle(javax.measure.quantity.Angle) CoordinateSystem(org.opengis.referencing.cs.CoordinateSystem) EllipsoidalCS(org.opengis.referencing.cs.EllipsoidalCS) GeodeticDatum(org.opengis.referencing.datum.GeodeticDatum) PrimeMeridian(org.opengis.referencing.datum.PrimeMeridian)

Example 3 with CartesianCS

use of org.opengis.referencing.cs.CartesianCS in project sis by apache.

the class DefaultProjectedCRS method formatTo.

/**
 * Formats the inner part of the <cite>Well Known Text</cite> (WKT) representation of this CRS.
 *
 * <div class="note"><b>Example:</b> Well-Known Text (version 2)
 * of a projected coordinate reference system using the Lambert Conformal method.
 *
 * {@preformat wkt
 *   ProjectedCRS[“NTF (Paris) / Lambert zone II”,
 *     BaseGeodCRS[“NTF (Paris)”,
 *       Datum[“Nouvelle Triangulation Francaise”,
 *         Ellipsoid[“NTF”, 6378249.2, 293.4660212936269, LengthUnit[“metre”, 1]]],
 *         PrimeMeridian[“Paris”, 2.5969213, AngleUnit[“grad”, 0.015707963267948967]]],
 *     Conversion[“Lambert zone II”,
 *       Method[“Lambert Conic Conformal (1SP)”, Id[“EPSG”, 9801, Citation[“IOGP”]]],
 *       Parameter[“Latitude of natural origin”, 52.0, AngleUnit[“grad”, 0.015707963267948967], Id[“EPSG”, 8801]],
 *       Parameter[“Longitude of natural origin”, 0.0, AngleUnit[“degree”, 0.017453292519943295], Id[“EPSG”, 8802]],
 *       Parameter[“Scale factor at natural origin”, 0.99987742, ScaleUnit[“unity”, 1], Id[“EPSG”, 8805]],
 *       Parameter[“False easting”, 600000.0, LengthUnit[“metre”, 1], Id[“EPSG”, 8806]],
 *       Parameter[“False northing”, 2200000.0, LengthUnit[“metre”, 1], Id[“EPSG”, 8807]]],
 *     CS[“Cartesian”, 2],
 *       Axis[“Easting (E)”, east, Order[1]],
 *       Axis[“Northing (N)”, north, Order[2]],
 *       LengthUnit[“metre”, 1],
 *     Id[“EPSG”, 27572, Citation[“IOGP”], URI[“urn:ogc:def:crs:EPSG::27572”]]]
 * }
 *
 * <p>Same coordinate reference system using WKT 1.</p>
 *
 * {@preformat wkt
 *   PROJCS[“NTF (Paris) / Lambert zone II”,
 *     GEOGCS[“NTF (Paris)”,
 *       DATUM[“Nouvelle Triangulation Francaise”,
 *         SPHEROID[“NTF”, 6378249.2, 293.4660212936269]],
 *         PRIMEM[“Paris”, 2.33722917],
 *       UNIT[“degree”, 0.017453292519943295],
 *       AXIS[“Longitude”, EAST],
 *       AXIS[“Latitude”, NORTH]],
 *     PROJECTION[“Lambert_Conformal_Conic_1SP”, AUTHORITY[“EPSG”, “9801”]],
 *     PARAMETER[“latitude_of_origin”, 46.8],
 *     PARAMETER[“central_meridian”, 0.0],
 *     PARAMETER[“scale_factor”, 0.99987742],
 *     PARAMETER[“false_easting”, 600000.0],
 *     PARAMETER[“false_northing”, 2200000.0],
 *     UNIT[“metre”, 1],
 *     AXIS[“Easting”, EAST],
 *     AXIS[“Northing”, NORTH],
 *     AUTHORITY[“EPSG”, “27572”]]
 * }
 * </div>
 *
 * @return {@code "ProjectedCRS"} (WKT 2) or {@code "ProjCS"} (WKT 1).
 *
 * @see <a href="http://docs.opengeospatial.org/is/12-063r5/12-063r5.html#57">WKT 2 specification §9</a>
 */
@Override
protected String formatTo(final Formatter formatter) {
    if (super.getConversionFromBase() == null) {
        /*
             * Should never happen except temporarily at construction time, or if the user invoked the copy constructor
             * with an invalid Conversion. Delegates to the super-class method for avoiding a NullPointerException.
             * That method returns 'null', which will cause the WKT to be declared invalid.
             */
        return super.formatTo(formatter);
    }
    WKTUtilities.appendName(this, formatter, null);
    final Convention convention = formatter.getConvention();
    final boolean isWKT1 = (convention.majorVersion() == 1);
    final CartesianCS cs = getCoordinateSystem();
    final GeographicCRS baseCRS = getBaseCRS();
    final Unit<?> lengthUnit = ReferencingUtilities.getUnit(cs);
    final Unit<Angle> angularUnit = AxisDirections.getAngularUnit(baseCRS.getCoordinateSystem(), null);
    final Unit<Angle> oldAngle = formatter.addContextualUnit(angularUnit);
    final Unit<?> oldLength = formatter.addContextualUnit(lengthUnit);
    /*
         * Format the enclosing base CRS. Note that WKT 1 formats a full GeographicCRS while WKT 2 formats only
         * the datum with the prime meridian (no coordinate system) and uses a different keyword ("BaseGeodCRS"
         * instead of "GeodeticCRS"). The DefaultGeodeticCRS.formatTo(Formatter) method detects when the CRS to
         * format is part of an enclosing ProjectedCRS and will adapt accordingly.
         */
    formatter.newLine();
    formatter.append(toFormattable(baseCRS));
    formatter.newLine();
    final Parameters p = new Parameters(this);
    final boolean isBaseCRS;
    if (isWKT1) {
        // Format outside of any "Conversion" element.
        p.append(formatter);
        isBaseCRS = false;
    } else {
        // Format inside a "Conversion" element.
        formatter.append(p);
        isBaseCRS = isBaseCRS(formatter);
    }
    /*
         * In WKT 2 format, the coordinate system axes are written only if this projected CRS is not the base CRS
         * of another derived CRS.
         */
    if (!isBaseCRS || convention == Convention.INTERNAL) {
        formatCS(formatter, cs, lengthUnit, isWKT1);
    }
    formatter.restoreContextualUnit(lengthUnit, oldLength);
    formatter.restoreContextualUnit(angularUnit, oldAngle);
    return isWKT1 ? WKTKeywords.ProjCS : isBaseCRS ? WKTKeywords.BaseProjCRS : formatter.shortOrLong(WKTKeywords.ProjCRS, WKTKeywords.ProjectedCRS);
}
Also used : CartesianCS(org.opengis.referencing.cs.CartesianCS) Convention(org.apache.sis.io.wkt.Convention) AxesConvention(org.apache.sis.referencing.cs.AxesConvention) Angle(javax.measure.quantity.Angle) GeographicCRS(org.opengis.referencing.crs.GeographicCRS)

Example 4 with CartesianCS

use of org.opengis.referencing.cs.CartesianCS in project sis by apache.

the class Legacy method forGeocentricCRS.

/**
 * Returns the axes to use instead of the ones in the given coordinate system.
 * If the coordinate system axes should be used as-is, returns {@code cs}.
 *
 * @param  cs  the coordinate system for which to compare the axis directions.
 * @param  toLegacy {@code true} for replacing ISO directions by the legacy ones,
 *         or {@code false} for the other way around.
 * @return the axes to use instead of the ones in the given CS,
 *         or {@code cs} if the CS axes should be used as-is.
 */
public static CartesianCS forGeocentricCRS(final CartesianCS cs, final boolean toLegacy) {
    final CartesianCS check = toLegacy ? standard(null) : LEGACY;
    final int dimension = check.getDimension();
    if (cs.getDimension() != dimension) {
        return cs;
    }
    for (int i = 0; i < dimension; i++) {
        if (!cs.getAxis(i).getDirection().equals(check.getAxis(i).getDirection())) {
            return cs;
        }
    }
    final Unit<?> unit = ReferencingUtilities.getUnit(cs);
    return toLegacy ? replaceUnit(LEGACY, unit) : standard(unit);
}
Also used : DefaultCartesianCS(org.apache.sis.referencing.cs.DefaultCartesianCS) CartesianCS(org.opengis.referencing.cs.CartesianCS)

Example 5 with CartesianCS

use of org.opengis.referencing.cs.CartesianCS in project sis by apache.

the class GeocentricAffine method createParameters.

/**
 * Returns the parameters for creating a datum shift operation.
 * The operation method will be one of the {@code GeocentricAffine} subclasses,
 * unless the specified {@code method} argument is {@link DatumShiftMethod#NONE}.
 * If no single operation method can be used, then this method returns {@code null}.
 *
 * <p>This method does <strong>not</strong> change the coordinate system type.
 * The source and target coordinate systems can be both {@code EllipsoidalCS} or both {@code CartesianCS}.
 * Any other type or mix of types (e.g. a {@code EllipsoidalCS} source and {@code CartesianCS} target)
 * will cause this method to return {@code null}. In such case, it is caller's responsibility to apply
 * the datum shift itself in Cartesian geocentric coordinates.</p>
 *
 * @param  sourceCS    the source coordinate system. Only the type and number of dimensions is checked.
 * @param  targetCS    the target coordinate system. Only the type and number of dimensions is checked.
 * @param  datumShift  the datum shift as a matrix, or {@code null} if there is no datum shift information.
 * @param  method      the preferred datum shift method. Note that {@code createParameters(…)} may overwrite.
 * @return the parameter values, or {@code null} if no single operation method can be found.
 */
public static ParameterValueGroup createParameters(final CoordinateSystem sourceCS, final CoordinateSystem targetCS, final Matrix datumShift, DatumShiftMethod method) {
    final boolean isEllipsoidal = (sourceCS instanceof EllipsoidalCS);
    if (!(isEllipsoidal ? (targetCS instanceof EllipsoidalCS) : (targetCS instanceof CartesianCS && sourceCS instanceof CartesianCS))) {
        // Coordinate systems are not two EllipsoidalCS or two CartesianCS.
        return null;
    }
    @SuppressWarnings("null") int dimension = sourceCS.getDimension();
    if (dimension != targetCS.getDimension()) {
        // Any value greater than 3 means "mismatched dimensions" for this method.
        dimension = 4;
    }
    if (method == DatumShiftMethod.NONE) {
        if (dimension <= 3) {
            return Affine.identity(dimension);
        } else if (isEllipsoidal) {
            final ParameterDescriptorGroup descriptor;
            switch(sourceCS.getDimension()) {
                case 2:
                    descriptor = Geographic2Dto3D.PARAMETERS;
                    break;
                case 3:
                    descriptor = Geographic3Dto2D.PARAMETERS;
                    break;
                default:
                    return null;
            }
            return descriptor.createValue();
        } else {
            return null;
        }
    }
    /*
         * Try to convert the matrix into (tX, tY, tZ, rX, rY, rZ, dS) parameters.
         * The matrix may not be convertible, in which case we will let the caller
         * uses the matrix directly in Cartesian geocentric coordinates.
         */
    final BursaWolfParameters parameters = new BursaWolfParameters(null, null);
    if (datumShift != null)
        try {
            parameters.setPositionVectorTransformation(datumShift, BURSAWOLF_TOLERANCE);
        } catch (IllegalArgumentException e) {
            log(Loggers.COORDINATE_OPERATION, "createParameters", e);
            return null;
        }
    else {
        /*
             * If there is no datum shift parameters (not to be confused with identity), then those parameters
             * are assumed unknown. Using the most accurate methods would give a false impression of accuracy,
             * so we use the fastest method instead. Since all parameter values are zero, Apache SIS should use
             * the AbridgedMolodenskyTransform2D optimization.
             */
        method = DatumShiftMethod.ABRIDGED_MOLODENSKY;
    }
    final boolean isTranslation = parameters.isTranslation();
    final ParameterDescriptorGroup descriptor;
    /*
         * Following "if" blocks are ordered from most accurate to less accurate datum shift method
         * supported by GeocentricAffine subclasses (except NONE which has already been handled).
         * Special cases:
         *
         *   - If the datum shift is applied between geocentric CRS, then the Molodensky approximations do not apply
         *     as they are designed for transformations between geographic CRS only. User preference is then ignored.
         *
         *   - Molodensky methods are approximations for datum shifts having only translation terms in their Bursa-Wolf
         *     parameters. If there is also a scale or rotation terms, then we can not use Molodensky methods. The user
         *     preference is then ignored.
         */
    if (!isEllipsoidal) {
        method = DatumShiftMethod.GEOCENTRIC_DOMAIN;
        descriptor = isTranslation ? GeocentricTranslation.PARAMETERS : PositionVector7Param.PARAMETERS;
    } else if (!isTranslation) {
        method = DatumShiftMethod.GEOCENTRIC_DOMAIN;
        descriptor = (dimension >= 3) ? PositionVector7Param3D.PARAMETERS : PositionVector7Param2D.PARAMETERS;
    } else
        switch(method) {
            case GEOCENTRIC_DOMAIN:
                {
                    descriptor = (dimension >= 3) ? GeocentricTranslation3D.PARAMETERS : GeocentricTranslation2D.PARAMETERS;
                    break;
                }
            case MOLODENSKY:
                {
                    descriptor = Molodensky.PARAMETERS;
                    break;
                }
            case ABRIDGED_MOLODENSKY:
                {
                    descriptor = AbridgedMolodensky.PARAMETERS;
                    break;
                }
            default:
                throw new AssertionError(method);
        }
    /*
         * Following lines will set all Bursa-Wolf parameter values (scale, translation
         * and rotation terms). In the particular case of Molodensky method, we have an
         * additional parameter for the number of source and target dimensions (2 or 3).
         */
    final Parameters values = createParameters(descriptor, parameters, isTranslation);
    switch(method) {
        case MOLODENSKY:
        case ABRIDGED_MOLODENSKY:
            {
                if (dimension <= 3) {
                    values.getOrCreate(Molodensky.DIMENSION).setValue(dimension);
                }
                break;
            }
    }
    return values;
}
Also used : CartesianCS(org.opengis.referencing.cs.CartesianCS) Parameters(org.apache.sis.parameter.Parameters) BursaWolfParameters(org.apache.sis.referencing.datum.BursaWolfParameters) ParameterDescriptorGroup(org.opengis.parameter.ParameterDescriptorGroup) EllipsoidalCS(org.opengis.referencing.cs.EllipsoidalCS) BursaWolfParameters(org.apache.sis.referencing.datum.BursaWolfParameters)

Aggregations

CartesianCS (org.opengis.referencing.cs.CartesianCS)14 EllipsoidalCS (org.opengis.referencing.cs.EllipsoidalCS)7 CoordinateSystem (org.opengis.referencing.cs.CoordinateSystem)6 ProjectedCRS (org.opengis.referencing.crs.ProjectedCRS)5 GeographicCRS (org.opengis.referencing.crs.GeographicCRS)4 Angle (javax.measure.quantity.Angle)3 GeodeticCRS (org.opengis.referencing.crs.GeodeticCRS)3 SphericalCS (org.opengis.referencing.cs.SphericalCS)3 GeodeticDatum (org.opengis.referencing.datum.GeodeticDatum)3 FactoryException (org.opengis.util.FactoryException)3 HashMap (java.util.HashMap)2 Convention (org.apache.sis.io.wkt.Convention)2 BursaWolfParameters (org.apache.sis.referencing.datum.BursaWolfParameters)2 SimpleInternationalString (org.apache.sis.util.iso.SimpleInternationalString)2 ParameterValueGroup (org.opengis.parameter.ParameterValueGroup)2 IdentifiedObject (org.opengis.referencing.IdentifiedObject)2 VerticalCRS (org.opengis.referencing.crs.VerticalCRS)2 CoordinateSystemAxis (org.opengis.referencing.cs.CoordinateSystemAxis)2 PrimeMeridian (org.opengis.referencing.datum.PrimeMeridian)2 InternationalString (org.opengis.util.InternationalString)2