use of org.opentripplanner.routing.algorithm.strategies.TrivialRemainingWeightHeuristic in project OpenTripPlanner by opentripplanner.
the class GraphPathFinder method getPaths.
/**
* Repeatedly build shortest path trees, retaining the best path to the destination after each try.
* For search N, all trips used in itineraries retained from trips 0..(N-1) are "banned" to create variety.
* The goal direction heuristic is reused between tries, which means the later tries have more information to
* work with (in the case of the more sophisticated bidirectional heuristic, which improves over time).
*/
public List<GraphPath> getPaths(RoutingRequest options) {
RoutingRequest originalReq = options.clone();
if (options == null) {
LOG.error("PathService was passed a null routing request.");
return null;
}
// Reuse one instance of AStar for all N requests, which are carried out sequentially
AStar aStar = new AStar();
if (options.rctx == null) {
options.setRoutingContext(router.graph);
// The special long-distance heuristic should be sufficient to constrain the search to the right area.
}
// If this Router has a GraphVisualizer attached to it, set it as a callback for the AStar search
if (router.graphVisualizer != null) {
aStar.setTraverseVisitor(router.graphVisualizer.traverseVisitor);
// options.disableRemainingWeightHeuristic = true; // DEBUG
}
// Without transit, we'd just just return multiple copies of the same on-street itinerary.
if (!options.modes.isTransit()) {
options.numItineraries = 1;
}
// FORCING the dominance function to weight only
options.dominanceFunction = new DominanceFunction.MinimumWeight();
LOG.debug("rreq={}", options);
// Choose an appropriate heuristic for goal direction.
RemainingWeightHeuristic heuristic;
RemainingWeightHeuristic reversedSearchHeuristic;
if (options.disableRemainingWeightHeuristic) {
heuristic = new TrivialRemainingWeightHeuristic();
reversedSearchHeuristic = new TrivialRemainingWeightHeuristic();
} else if (options.modes.isTransit()) {
// Only use the BiDi heuristic for transit. It is not very useful for on-street modes.
// heuristic = new InterleavedBidirectionalHeuristic(options.rctx.graph);
// Use a simplistic heuristic until BiDi heuristic is improved, see #2153
heuristic = new InterleavedBidirectionalHeuristic();
reversedSearchHeuristic = new InterleavedBidirectionalHeuristic();
} else {
heuristic = new EuclideanRemainingWeightHeuristic();
reversedSearchHeuristic = new EuclideanRemainingWeightHeuristic();
}
options.rctx.remainingWeightHeuristic = heuristic;
/* In RoutingRequest, maxTransfers defaults to 2. Over long distances, we may see
* itineraries with far more transfers. We do not expect transfer limiting to improve
* search times on the LongDistancePathService, so we set it to the maximum we ever expect
* to see. Because people may use either the traditional path services or the
* LongDistancePathService, we do not change the global default but override it here. */
options.maxTransfers = 4;
// Now we always use what used to be called longDistance mode. Non-longDistance mode is no longer supported.
options.longDistance = true;
/* In long distance mode, maxWalk has a different meaning than it used to.
* It's the radius around the origin or destination within which you can walk on the streets.
* If no value is provided, max walk defaults to the largest double-precision float.
* This would cause long distance mode to do unbounded street searches and consider the whole graph walkable. */
if (options.maxWalkDistance == Double.MAX_VALUE)
options.maxWalkDistance = DEFAULT_MAX_WALK;
if (options.maxWalkDistance > CLAMP_MAX_WALK)
options.maxWalkDistance = CLAMP_MAX_WALK;
long searchBeginTime = System.currentTimeMillis();
LOG.debug("BEGIN SEARCH");
List<GraphPath> paths = Lists.newArrayList();
while (paths.size() < options.numItineraries) {
// TODO pull all this timeout logic into a function near org.opentripplanner.util.DateUtils.absoluteTimeout()
int timeoutIndex = paths.size();
if (timeoutIndex >= router.timeouts.length) {
timeoutIndex = router.timeouts.length - 1;
}
double timeout = searchBeginTime + (router.timeouts[timeoutIndex] * 1000);
// Convert from absolute to relative time
timeout -= System.currentTimeMillis();
// Convert milliseconds to seconds
timeout /= 1000;
if (timeout <= 0) {
// Catch the case where advancing to the next (lower) timeout value means the search is timed out
// before it even begins. Passing a negative relative timeout in the SPT call would mean "no timeout".
options.rctx.aborted = true;
break;
}
// Don't dig through the SPT object, just ask the A star algorithm for the states that reached the target.
aStar.getShortestPathTree(options, timeout);
if (options.rctx.aborted) {
// Search timed out or was gracefully aborted for some other reason.
break;
}
List<GraphPath> newPaths = aStar.getPathsToTarget();
if (newPaths.isEmpty()) {
break;
}
// Do a full reversed search to compact the legs
if (options.compactLegsByReversedSearch) {
newPaths = compactLegsByReversedSearch(aStar, originalReq, options, newPaths, timeout, reversedSearchHeuristic);
}
// Find all trips used in this path and ban them for the remaining searches
for (GraphPath path : newPaths) {
// path.dump();
List<AgencyAndId> tripIds = path.getTrips();
for (AgencyAndId tripId : tripIds) {
options.banTrip(tripId);
}
if (tripIds.isEmpty()) {
// This path does not use transit (is entirely on-street). Do not repeatedly find the same one.
options.onlyTransitTrips = true;
}
}
paths.addAll(newPaths.stream().filter(path -> {
double duration = options.useRequestedDateTimeInMaxHours ? options.arriveBy ? options.dateTime - path.getStartTime() : path.getEndTime() - options.dateTime : path.getDuration();
return duration < options.maxHours * 60 * 60;
}).collect(Collectors.toList()));
LOG.debug("we have {} paths", paths.size());
}
LOG.debug("END SEARCH ({} msec)", System.currentTimeMillis() - searchBeginTime);
Collections.sort(paths, new PathComparator(options.arriveBy));
return paths;
}
use of org.opentripplanner.routing.algorithm.strategies.TrivialRemainingWeightHeuristic in project OpenTripPlanner by opentripplanner.
the class AStar method startSearch.
/**
* set up the search, optionally not adding the initial state to the queue (for multi-state Dijkstra)
*/
private void startSearch(RoutingRequest options, SearchTerminationStrategy terminationStrategy, long abortTime, boolean addToQueue) {
runState = new RunState(options, terminationStrategy);
runState.rctx = options.getRoutingContext();
runState.spt = options.getNewShortestPathTree();
// We want to reuse the heuristic instance in a series of requests for the same target to avoid repeated work.
// "Batch" means one-to-many mode, where there is no goal to reach so we use a trivial heuristic.
runState.heuristic = options.batch ? new TrivialRemainingWeightHeuristic() : runState.rctx.remainingWeightHeuristic;
// Since initial states can be multiple, heuristic cannot depend on the initial state.
// Initializing the bidirectional heuristic is a pretty complicated operation that involves searching through
// the streets around the origin and destination.
runState.heuristic.initialize(runState.options, abortTime);
if (abortTime < Long.MAX_VALUE && System.currentTimeMillis() > abortTime) {
LOG.warn("Timeout during initialization of goal direction heuristic.");
options.rctx.debugOutput.timedOut = true;
// Search timed out
runState = null;
return;
}
// Priority Queue.
// The queue is self-resizing, so we initialize it to have size = O(sqrt(|V|)) << |V|.
// For reference, a random, undirected search on a uniform 2d grid will examine roughly sqrt(|V|) vertices
// before reaching its target.
int initialSize = runState.rctx.graph.getVertices().size();
initialSize = (int) Math.ceil(2 * (Math.sqrt((double) initialSize + 1)));
runState.pq = new BinHeap<>(initialSize);
runState.nVisited = 0;
runState.targetAcceptedStates = Lists.newArrayList();
if (addToQueue) {
State initialState = new State(options);
runState.spt.add(initialState);
runState.pq.insert(initialState, 0);
}
}
Aggregations