use of org.opentripplanner.routing.core.State in project OpenTripPlanner by opentripplanner.
the class GraphPathFinder method joinPaths.
private static GraphPath joinPaths(List<GraphPath> paths) {
State lastState = paths.get(0).states.getLast();
GraphPath newPath = new GraphPath(lastState, false);
Vertex lastVertex = lastState.getVertex();
// With more paths we should allow more transfers
lastState.getOptions().maxTransfers *= paths.size();
for (GraphPath path : paths.subList(1, paths.size())) {
lastState = newPath.states.getLast();
// add a leg-switching state
LegSwitchingEdge legSwitchingEdge = new LegSwitchingEdge(lastVertex, lastVertex);
lastState = legSwitchingEdge.traverse(lastState);
newPath.edges.add(legSwitchingEdge);
newPath.states.add(lastState);
// add the next subpath
for (Edge e : path.edges) {
lastState = e.traverse(lastState);
newPath.edges.add(e);
newPath.states.add(lastState);
}
lastVertex = path.getEndVertex();
}
return newPath;
}
use of org.opentripplanner.routing.core.State in project OpenTripPlanner by opentripplanner.
the class GraphPath method getTrips.
/**
* @return A list containing one AgencyAndId (trip_id) for each vehicle boarded in this path,
* in the chronological order they are boarded.
*/
public List<AgencyAndId> getTrips() {
List<AgencyAndId> ret = new LinkedList<AgencyAndId>();
Trip lastTrip = null;
for (State s : states) {
if (s.getBackEdge() != null) {
Trip trip = s.getBackTrip();
if (trip != null && trip != lastTrip) {
ret.add(trip.getId());
lastTrip = trip;
}
}
}
return ret;
}
use of org.opentripplanner.routing.core.State in project OpenTripPlanner by opentripplanner.
the class SIsochrone method getIsochrone.
/**
* Calculates walksheds for a given location, based on time given to walk and the walk speed.
*
* Depending on the value for the "output" parameter (i.e. "POINTS", "SHED" or "EDGES"), a
* different type of GeoJSON geometry is returned. If a SHED is requested, then a ConcaveHull
* of the EDGES/roads is returned. If that fails, a ConvexHull will be returned.
* <p>
* The ConcaveHull parameter is set to 0.005 degrees. The offroad walkspeed is assumed to be
* 0.83333 m/sec (= 3km/h) until a road is hit.
* <p>
* Note that the set of EDGES/roads returned as well as POINTS returned may contain duplicates.
* If POINTS are requested, then not the end-points are returned at which the max time is
* reached, but instead all the graph nodes/crossings that are within the time limits.
* <p>
* In case there is no road near by within the given time, then a circle for the walktime limit
* is created and returned for the SHED parameter. Otherwise the edge with the direction
* towards the closest road. Note that the circle is calculated in Euclidian 2D coordinates,
* and distortions towards an ellipse will appear if it is transformed/projected to the user location.
* <p>
* An example request may look like this:
* localhost:8080/otp-rest-servlet/ws/iso?layers=traveltime&styles=mask&batch=true&fromPlace=51.040193121307176
* %2C-114.04471635818481&toPlace
* =51.09098935%2C-113.95179705&time=2012-06-06T08%3A00%3A00&mode=WALK&maxWalkDistance=10000&walkSpeed=1.38&walkTime=10.7&output=EDGES
* Though the first parameters (i) layer, (ii) styles and (iii) batch could be discarded.
*
* @param walkmins Maximum number of minutes to walk.
* @param output Can be set to "POINTS", "SHED" or "EDGES" to return different types of GeoJSON
* geometry. SHED returns a ConcaveHull or ConvexHull of the edges/roads. POINTS returns
* all graph nodes that are within the time limit.
* @return a JSON document containing geometries (either points, lineStrings or a polygon).
* @throws Exception
* @author sstein---geo.uzh.ch
*/
@GET
@Produces({ MediaType.APPLICATION_JSON })
public String getIsochrone(@QueryParam("walkTime") @DefaultValue("15") double walkmins, @QueryParam("output") @DefaultValue("POINTS") String output) throws Exception {
this.debugGeoms = new ArrayList();
this.tooFastTraversedEdgeGeoms = new ArrayList();
RoutingRequest sptRequestA = buildRequest();
String from = sptRequestA.from.toString();
int pos = 1;
float lat = 0;
float lon = 0;
for (String s : from.split(",")) {
if (s.isEmpty()) {
// no location
Response.status(Status.BAD_REQUEST).entity("no position").build();
return null;
}
try {
float num = Float.parseFloat(s);
if (pos == 1) {
lat = num;
}
if (pos == 2) {
lon = num;
}
} catch (Exception e) {
throw new WebApplicationException(Response.status(Status.BAD_REQUEST).entity("Could not parse position string to number. Require numerical lat & long coords.").build());
}
pos++;
}
GeometryFactory gf = new GeometryFactory();
Coordinate dropPoint = new Coordinate(lon, lat);
int walkInMin = (int) Math.floor(walkmins);
double walkInSec = walkmins * 60;
LOG.debug("given travel time: " + walkInMin + " mins + " + (walkInSec - (60 * walkInMin)) + " sec");
// graph dynamically by 1.3 * min -> this should save processing time
if (walkInMin < 30) {
sptRequestA.worstTime = sptRequestA.dateTime + (30 * 60);
} else {
sptRequestA.worstTime = sptRequestA.dateTime + Math.round(walkInMin * 1.3 * 60);
}
// set the switch-time for shed/area calculation, i.e. to decide if the hull is calculated based on points or on edges
TraverseModeSet modes = sptRequestA.modes;
LOG.debug("mode(s): " + modes);
if (modes.contains(TraverseMode.TRANSIT)) {
// 20min (use 20min for transit, since buses may not come all the time)
shedCalcMethodSwitchTimeInSec = 60 * 20;
} else if (modes.contains(TraverseMode.CAR)) {
// 10min
shedCalcMethodSwitchTimeInSec = 60 * 10;
} else if (modes.contains(TraverseMode.BICYCLE)) {
// 10min
shedCalcMethodSwitchTimeInSec = 60 * 10;
} else {
// 20min
shedCalcMethodSwitchTimeInSec = 60 * 20;
}
// set the maxUserSpeed, which is used later to check for u-type streets/crescents when calculating sub-edges;
// Note, that the car speed depends on the edge itself, so this value may be replaced later
this.usesCar = false;
int numberOfModes = modes.getModes().size();
if (numberOfModes == 1) {
if (modes.getWalk()) {
this.maxUserSpeed = sptRequestA.walkSpeed;
} else if (modes.getBicycle()) {
this.maxUserSpeed = sptRequestA.bikeSpeed;
} else if (modes.getCar()) {
this.maxUserSpeed = sptRequestA.carSpeed;
this.usesCar = true;
}
} else {
// for all other cases (multiple-modes)
// sstein: I thought I may set it to 36.111 m/sec = 130 km/h,
// but maybe it is better to assume walk speed for transit, i.e. treat it like if the
// person gets off the bus on the last crossing and walks the "last mile".
this.maxUserSpeed = sptRequestA.walkSpeed;
}
if (doSpeedTest) {
LOG.debug("performing angle and speed based test to detect u-shapes");
} else {
LOG.debug("performing only angle based test to detect u-shapes");
}
// TODO: OTP prefers to snap to car-roads/ways, which is not so nice, when walking,
// and a footpath is closer by. So far there is no option to switch that off
Router router = otpServer.getRouter(routerId);
// create the ShortestPathTree
try {
sptRequestA.setRoutingContext(router.graph);
} catch (Exception e) {
// if we get an exception here, and in particular a VertexNotFoundException,
// then it is likely that we chose a (transit) mode without having that (transit) modes data
LOG.debug("cannot set RoutingContext: " + e.toString());
LOG.debug("cannot set RoutingContext: setting mode=WALK");
// fall back to walk mode
sptRequestA.setMode(TraverseMode.WALK);
sptRequestA.setRoutingContext(router.graph);
}
ShortestPathTree sptA = new AStar().getShortestPathTree(sptRequestA);
StreetLocation origin = (StreetLocation) sptRequestA.rctx.fromVertex;
// remove inserted points
sptRequestA.cleanup();
// create a LineString for display
Coordinate[] pathToStreetCoords = new Coordinate[2];
pathToStreetCoords[0] = dropPoint;
pathToStreetCoords[1] = origin.getCoordinate();
LineString pathToStreet = gf.createLineString(pathToStreetCoords);
// get distance between origin and drop point for time correction
double distanceToRoad = SphericalDistanceLibrary.distance(origin.getY(), origin.getX(), dropPoint.y, dropPoint.x);
long offRoadTimeCorrection = (long) (distanceToRoad / this.offRoadWalkspeed);
//
// --- filter the states ---
//
Set<Coordinate> visitedCoords = new HashSet<Coordinate>();
ArrayList<Edge> allConnectingEdges = new ArrayList<Edge>();
Coordinate[] coords = null;
long maxTime = (long) walkInSec - offRoadTimeCorrection;
// if the initial walk is already to long, there is no need to parse...
if (maxTime <= 0) {
noRoadNearBy = true;
long timeToWalk = (long) walkInSec;
long timeBetweenStates = offRoadTimeCorrection;
long timeMissing = timeToWalk;
double fraction = (double) timeMissing / (double) timeBetweenStates;
pathToStreet = getSubLineString(pathToStreet, fraction);
LOG.debug("no street found within giving travel time (for off-road walkspeed: {} m/sec)", this.offRoadWalkspeed);
} else {
noRoadNearBy = false;
Map<ReversibleLineStringWrapper, Edge> connectingEdgesMap = Maps.newHashMap();
for (State state : sptA.getAllStates()) {
long et = state.getElapsedTimeSeconds();
if (et <= maxTime) {
// 250 points away (while 145 were finally displayed)
if (visitedCoords.contains(state.getVertex().getCoordinate())) {
continue;
} else {
visitedCoords.add(state.getVertex().getCoordinate());
}
// -- get all Edges needed later for the edge representation
// and to calculate an edge-based walkshed
// Note, it can happen that we get a null geometry here, e.g. for hop-edges!
Collection<Edge> vertexEdgesIn = state.getVertex().getIncoming();
for (Iterator<Edge> iterator = vertexEdgesIn.iterator(); iterator.hasNext(); ) {
Edge edge = (Edge) iterator.next();
Geometry edgeGeom = edge.getGeometry();
if (edgeGeom != null) {
// make sure we get only real edges
if (edgeGeom instanceof LineString) {
// allConnectingEdges.add(edge); // instead of this, use a map now, so we don't have similar edge many times
connectingEdgesMap.put(new ReversibleLineStringWrapper((LineString) edgeGeom), edge);
}
}
}
Collection<Edge> vertexEdgesOut = state.getVertex().getOutgoing();
for (Iterator<Edge> iterator = vertexEdgesOut.iterator(); iterator.hasNext(); ) {
Edge edge = (Edge) iterator.next();
Geometry edgeGeom = edge.getGeometry();
if (edgeGeom != null) {
if (edgeGeom instanceof LineString) {
// allConnectingEdges.add(edge); // instead of this, use a map now, so we don't similar edge many times
connectingEdgesMap.put(new ReversibleLineStringWrapper((LineString) edgeGeom), edge);
}
}
}
}
// end : if(et < maxTime)
}
// --
// points from list to array, for later
coords = new Coordinate[visitedCoords.size()];
int i = 0;
for (Coordinate c : visitedCoords) coords[i++] = c;
// connection edges from Map to List
allConnectingEdges.clear();
for (Edge tedge : connectingEdgesMap.values()) allConnectingEdges.add(tedge);
}
StringWriter sw = new StringWriter();
GeometryJSON geometryJSON = new GeometryJSON();
//
try {
if (output.equals(SIsochrone.RESULT_TYPE_POINTS)) {
// and return those points
if (noRoadNearBy) {
Geometry circleShape = createCirle(dropPoint, pathToStreet);
coords = circleShape.getCoordinates();
}
// -- the states/nodes with time elapsed <= X min.
LOG.debug("write multipoint geom with {} points", coords.length);
geometryJSON.write(gf.createMultiPoint(coords), sw);
LOG.debug("done");
} else if (output.equals(SIsochrone.RESULT_TYPE_SHED)) {
Geometry[] geomsArray = null;
// in case there was no road we create a circle
if (noRoadNearBy) {
Geometry circleShape = createCirle(dropPoint, pathToStreet);
geometryJSON.write(circleShape, sw);
} else {
if (maxTime > shedCalcMethodSwitchTimeInSec) {
// eg., walkshed > 20 min
// -- create a point-based walkshed
// less exact and should be used for large walksheds with many edges
LOG.debug("create point-based shed (not from edges)");
geomsArray = new Geometry[coords.length];
for (int j = 0; j < geomsArray.length; j++) {
geomsArray[j] = gf.createPoint(coords[j]);
}
} else {
// -- create an edge-based walkshed
// it is more exact and should be used for short walks
LOG.debug("create edge-based shed (not from points)");
Map<ReversibleLineStringWrapper, LineString> walkShedEdges = Maps.newHashMap();
// add the walk from the pushpin to closest street point
walkShedEdges.put(new ReversibleLineStringWrapper(pathToStreet), pathToStreet);
// get the edges and edge parts within time limits
ArrayList<LineString> withinTimeEdges = this.getLinesAndSubEdgesWithinMaxTime(maxTime, allConnectingEdges, sptA, angleLimitForUShapeDetection, distanceToleranceForUShapeDetection, maxUserSpeed, usesCar, doSpeedTest);
for (LineString ls : withinTimeEdges) {
walkShedEdges.put(new ReversibleLineStringWrapper(ls), ls);
}
geomsArray = new Geometry[walkShedEdges.size()];
int k = 0;
for (LineString ls : walkShedEdges.values()) geomsArray[k++] = ls;
}
// end if-else: maxTime condition
GeometryCollection gc = gf.createGeometryCollection(geomsArray);
// create the concave hull, but in case it fails we just return the convex hull
Geometry outputHull = null;
LOG.debug("create concave hull from {} geoms with edge length limit of about {} m (distance on meridian)", geomsArray.length, concaveHullAlpha * 111132);
// (see wikipedia: http://en.wikipedia.org/wiki/Latitude#The_length_of_a_degree_of_latitude)
try {
ConcaveHull hull = new ConcaveHull(gc, concaveHullAlpha);
outputHull = hull.getConcaveHull();
} catch (Exception e) {
outputHull = gc.convexHull();
LOG.debug("Could not generate ConcaveHull for WalkShed, using ConvexHull instead.");
}
LOG.debug("write shed geom");
geometryJSON.write(outputHull, sw);
LOG.debug("done");
}
} else if (output.equals(SIsochrone.RESULT_TYPE_EDGES)) {
// in case there was no road we return only the suggested path to the street
if (noRoadNearBy) {
geometryJSON.write(pathToStreet, sw);
} else {
// -- if we would use only the edges from the paths to the origin we will miss
// some edges that will be never on the shortest path (e.g. loops/crescents).
// However, we can retrieve all edges by checking the times for each
// edge end-point
Map<ReversibleLineStringWrapper, LineString> walkShedEdges = Maps.newHashMap();
// add the walk from the pushpin to closest street point
walkShedEdges.put(new ReversibleLineStringWrapper(pathToStreet), pathToStreet);
// get the edges and edge parts within time limits
ArrayList<LineString> withinTimeEdges = this.getLinesAndSubEdgesWithinMaxTime(maxTime, allConnectingEdges, sptA, angleLimitForUShapeDetection, distanceToleranceForUShapeDetection, maxUserSpeed, usesCar, doSpeedTest);
for (LineString ls : withinTimeEdges) {
walkShedEdges.put(new ReversibleLineStringWrapper(ls), ls);
}
Geometry mls = null;
LineString[] edges = new LineString[walkShedEdges.size()];
int k = 0;
for (LineString ls : walkShedEdges.values()) edges[k++] = ls;
LOG.debug("create multilinestring from {} geoms", edges.length);
mls = gf.createMultiLineString(edges);
LOG.debug("write geom");
geometryJSON.write(mls, sw);
LOG.debug("done");
}
} else if (output.equals("DEBUGEDGES")) {
// -- for debugging, i.e. display of detected u-shapes/crescents
ArrayList<LineString> withinTimeEdges = this.getLinesAndSubEdgesWithinMaxTime(maxTime, allConnectingEdges, sptA, angleLimitForUShapeDetection, distanceToleranceForUShapeDetection, maxUserSpeed, usesCar, doSpeedTest);
if (this.showTooFastEdgesAsDebugGeomsANDnotUShapes) {
LOG.debug("displaying edges that are traversed too fast");
this.debugGeoms = this.tooFastTraversedEdgeGeoms;
} else {
LOG.debug("displaying detected u-shaped roads/crescents");
}
LineString[] edges = new LineString[this.debugGeoms.size()];
int k = 0;
for (Iterator iterator = debugGeoms.iterator(); iterator.hasNext(); ) {
LineString ls = (LineString) iterator.next();
edges[k] = ls;
k++;
}
Geometry mls = gf.createMultiLineString(edges);
LOG.debug("write debug geom");
geometryJSON.write(mls, sw);
LOG.debug("done");
}
} catch (Exception e) {
LOG.error("Exception creating isochrone", e);
}
return sw.toString();
}
use of org.opentripplanner.routing.core.State in project OpenTripPlanner by opentripplanner.
the class SIsochrone method getLinesAndSubEdgesWithinMaxTime.
/**
* Filters all input edges and returns all those as LineString geometries, that have at least one end point within the time limits. If they have
* only one end point inside, then the sub-edge is returned.
*
* @param maxTime the time limit in seconds that defines the size of the walkshed
* @param allConnectingStateEdges all Edges that have been found to connect all states < maxTime
* @param spt the ShortestPathTree generated for the pushpin drop point as origin
* @param angleLimit the angle tolerance to detect roads with u-shapes, i.e. Pi/2 angles, in Radiant.
* @param distanceTolerance in percent (e.g. 1.1 = 110%) for u-shape detection based on distance criteria
* @param hasCar is travel mode by CAR?
* @param performSpeedTest if true applies a test to each edge to check if the edge can be traversed in time. The test can detect u-shaped roads.
* @return
*/
ArrayList<LineString> getLinesAndSubEdgesWithinMaxTime(long maxTime, ArrayList<Edge> allConnectingStateEdges, ShortestPathTree spt, double angleLimit, double distanceTolerance, double userSpeed, boolean hasCar, boolean performSpeedTest) {
LOG.debug("maximal userSpeed set to: " + userSpeed + " m/sec ");
if (hasCar) {
LOG.debug("travel mode is set to CAR, hence the given speed may be adjusted for each edge");
}
ArrayList<LineString> walkShedEdges = new ArrayList<LineString>();
ArrayList<LineString> otherEdges = new ArrayList<LineString>();
ArrayList<LineString> borderEdges = new ArrayList<LineString>();
ArrayList<LineString> uShapes = new ArrayList<LineString>();
int countEdgesOutside = 0;
// -- determination of walkshed edges via edge states
for (Iterator iterator = allConnectingStateEdges.iterator(); iterator.hasNext(); ) {
Edge edge = (Edge) iterator.next();
State sFrom = spt.getState(edge.getFromVertex());
State sTo = spt.getState(edge.getToVertex());
if ((sFrom != null) && (sTo != null)) {
long fromTime = sFrom.getElapsedTimeSeconds();
long toTime = sTo.getElapsedTimeSeconds();
long dt = Math.abs(toTime - fromTime);
Geometry edgeGeom = edge.getGeometry();
if ((edgeGeom != null) && (edgeGeom instanceof LineString)) {
LineString ls = (LineString) edgeGeom;
// detect u-shape roads/crescents - they need to be treated separately
boolean uShapeOrLonger = testForUshape(edge, maxTime, fromTime, toTime, angleLimit, distanceTolerance, userSpeed, hasCar, performSpeedTest);
if (uShapeOrLonger) {
uShapes.add(ls);
}
// evaluate if an edge is completely within the time or only with one end
if ((fromTime < maxTime) && (toTime < maxTime)) {
// a second test if we have a u-shaped road.
if (uShapeOrLonger) {
treatAndAddUshapeWithinTimeLimits(maxTime, userSpeed, walkShedEdges, edge, fromTime, toTime, ls, hasCar);
} else {
walkShedEdges.add(ls);
}
} else // end if:fromTime & toTime < maxTime
{
// create the sub edge
if ((fromTime < maxTime) || (toTime < maxTime)) {
double lineDist = edge.getDistance();
LineString inputLS = ls;
double fraction = 1.0;
if (fromTime < toTime) {
double distanceToWalkInTimeMissing = distanceToMoveInRemainingTime(maxTime, fromTime, dt, userSpeed, edge, hasCar, uShapeOrLonger);
fraction = (double) distanceToWalkInTimeMissing / (double) lineDist;
} else {
// toTime < fromTime : invert the edge direction
inputLS = (LineString) ls.reverse();
double distanceToWalkInTimeMissing = distanceToMoveInRemainingTime(maxTime, toTime, dt, userSpeed, edge, hasCar, uShapeOrLonger);
fraction = (double) distanceToWalkInTimeMissing / (double) lineDist;
}
// get the subedge
LineString subLine = this.getSubLineString(inputLS, fraction);
borderEdges.add(subLine);
} else {
// this edge is completely outside - this should actually not happen
// we will not do anything, just count
countEdgesOutside++;
}
}
// end else: fromTime & toTime < maxTime
} else // end if: edge instance of LineString
{
// edge is not instance of LineString
LOG.debug("edge not instance of LineString");
}
} else // end if(sFrom && sTo != null) start Else
{
// LOG.debug("could not retrieve state for edge-endpoint"); //for a 6min car ride, there can be (too) many of such messages
Geometry edgeGeom = edge.getGeometry();
if ((edgeGeom != null) && (edgeGeom instanceof LineString)) {
otherEdges.add((LineString) edgeGeom);
}
}
// end else: sFrom && sTo != null
}
// end for loop over edges
walkShedEdges.addAll(borderEdges);
this.debugGeoms.addAll(uShapes);
LOG.debug("number of detected u-shapes/crescents: " + uShapes.size());
return walkShedEdges;
}
use of org.opentripplanner.routing.core.State in project OpenTripPlanner by opentripplanner.
the class AnalysisUtils method getComponentPolygons.
/**
* Get polygons covering the components of the graph. The largest component (in terms of number
* of nodes) will not overlap any other components (it will have holes); the others may overlap
* each other.
*
* @param dateTime
*/
public static List<Geometry> getComponentPolygons(Graph graph, RoutingRequest options, long time) {
DisjointSet<Vertex> components = getConnectedComponents(graph);
LinkedListMultimap<Integer, Coordinate> componentCoordinates = LinkedListMultimap.create();
options.setDummyRoutingContext(graph);
for (Vertex v : graph.getVertices()) {
for (Edge e : v.getOutgoing()) {
State s0 = new State(v, time, options);
State s1 = e.traverse(s0);
if (s1 != null) {
Integer component = components.find(e.getFromVertex());
Geometry geometry = s1.getBackEdge().getGeometry();
if (geometry != null) {
List<Coordinate> coordinates = new ArrayList<Coordinate>(Arrays.asList(geometry.getCoordinates()));
for (int i = 0; i < coordinates.size(); ++i) {
Coordinate coordinate = new Coordinate(coordinates.get(i));
coordinate.x = Math.round(coordinate.x * PRECISION) / PRECISION;
coordinate.y = Math.round(coordinate.y * PRECISION) / PRECISION;
coordinates.set(i, coordinate);
}
componentCoordinates.putAll(component, coordinates);
}
}
}
}
// generate convex hull of each component
List<Geometry> geoms = new ArrayList<Geometry>();
int mainComponentSize = 0;
int mainComponentIndex = -1;
int component = 0;
for (Integer key : componentCoordinates.keySet()) {
List<Coordinate> coords = componentCoordinates.get(key);
Coordinate[] coordArray = new Coordinate[coords.size()];
ConvexHull hull = new ConvexHull(coords.toArray(coordArray), GeometryUtils.getGeometryFactory());
Geometry geom = hull.getConvexHull();
// buffer components which are mere lines so that they do not disappear.
if (geom instanceof LineString) {
// ~10 meters
geom = geom.buffer(0.01);
} else if (geom instanceof Point) {
// ~50 meters, so that it shows up
geom = geom.buffer(0.05);
}
geoms.add(geom);
if (mainComponentSize < coordArray.length) {
mainComponentIndex = component;
mainComponentSize = coordArray.length;
}
++component;
}
// subtract small components out of main component
// (small components are permitted to overlap each other)
Geometry mainComponent = geoms.get(mainComponentIndex);
for (int i = 0; i < geoms.size(); ++i) {
Geometry geom = geoms.get(i);
if (i == mainComponentIndex) {
continue;
}
mainComponent = mainComponent.difference(geom);
}
geoms.set(mainComponentIndex, mainComponent);
return geoms;
}
Aggregations