use of org.opentripplanner.routing.spt.ShortestPathTree in project OpenTripPlanner by opentripplanner.
the class TestBikeRental method testBasic.
public void testBasic() throws Exception {
// generate a very simple graph
Graph graph = new Graph();
StreetVertex v1 = new IntersectionVertex(graph, "v1", -77.0492, 38.856, "v1");
StreetVertex v2 = new IntersectionVertex(graph, "v2", -77.0492, 38.857, "v2");
StreetVertex v3 = new IntersectionVertex(graph, "v3", -77.0492, 38.858, "v3");
@SuppressWarnings("unused") Edge walk = new StreetEdge(v1, v2, GeometryUtils.makeLineString(-77.0492, 38.856, -77.0492, 38.857), "S. Crystal Dr", 87, StreetTraversalPermission.PEDESTRIAN, false);
@SuppressWarnings("unused") Edge mustBike = new StreetEdge(v2, v3, GeometryUtils.makeLineString(-77.0492, 38.857, -77.0492, 38.858), "S. Crystal Dr", 87, StreetTraversalPermission.BICYCLE, false);
AStar aStar = new AStar();
// it is impossible to get from v1 to v3 by walking
RoutingRequest options = new RoutingRequest(new TraverseModeSet("WALK,TRANSIT"));
options.setRoutingContext(graph, v1, v3);
ShortestPathTree tree = aStar.getShortestPathTree(options);
GraphPath path = tree.getPath(v3, false);
assertNull(path);
// or biking + walking (assuming walking bikes is disallowed)
options = new RoutingRequest(new TraverseModeSet("WALK,BICYCLE,TRANSIT"));
options.freezeTraverseMode();
options.setRoutingContext(graph, v1, v3);
tree = aStar.getShortestPathTree(options);
path = tree.getPath(v3, false);
assertNull(path);
// so we add a bike share
BikeRentalStation station = new BikeRentalStation();
station.id = "id";
station.name = new NonLocalizedString("station");
station.x = -77.049;
station.y = 36.856;
station.bikesAvailable = 5;
station.spacesAvailable = 5;
BikeRentalStationVertex stationVertex = new BikeRentalStationVertex(graph, station);
new StreetBikeRentalLink(stationVertex, v2);
new StreetBikeRentalLink(v2, stationVertex);
Set<String> networks = new HashSet<String>(Arrays.asList("default"));
new RentABikeOnEdge(stationVertex, stationVertex, networks);
new RentABikeOffEdge(stationVertex, stationVertex, networks);
// but we can't get off the bike at v3, so we still fail
options = new RoutingRequest(new TraverseModeSet("WALK,BICYCLE,TRANSIT"));
options.freezeTraverseMode();
options.setRoutingContext(graph, v1, v3);
tree = aStar.getShortestPathTree(options);
path = tree.getPath(v3, false);
// null is returned because the only state at the target is not final
assertNull(path);
BikeRentalStation station2 = new BikeRentalStation();
station2.id = "id2";
station2.name = new NonLocalizedString("station2");
station2.x = -77.049;
station2.y = 36.857;
station2.bikesAvailable = 5;
station2.spacesAvailable = 5;
BikeRentalStationVertex stationVertex2 = new BikeRentalStationVertex(graph, station2);
new StreetBikeRentalLink(stationVertex2, v3);
new StreetBikeRentalLink(v3, stationVertex2);
new RentABikeOnEdge(stationVertex2, stationVertex2, networks);
new RentABikeOffEdge(stationVertex2, stationVertex2, networks);
// now we succeed!
options = new RoutingRequest();
new QualifiedModeSet("BICYCLE_RENT,TRANSIT").applyToRoutingRequest(options);
options.setRoutingContext(graph, v1, v3);
tree = aStar.getShortestPathTree(options);
path = tree.getPath(v3, false);
assertNotNull(path);
}
use of org.opentripplanner.routing.spt.ShortestPathTree in project OpenTripPlanner by opentripplanner.
the class WalkableAreaBuilder method pruneAreaEdges.
/**
* Do an all-pairs shortest path search from a list of vertices over a specified set of edges,
* and retain only those edges which are actually used in some shortest path.
*
* @param startingVertices
* @param edges
*/
private void pruneAreaEdges(Collection<Vertex> startingVertices, Set<Edge> edges) {
if (edges.size() == 0)
return;
TraverseMode mode;
StreetEdge firstEdge = (StreetEdge) edges.iterator().next();
if (firstEdge.getPermission().allows(StreetTraversalPermission.PEDESTRIAN)) {
mode = TraverseMode.WALK;
} else if (firstEdge.getPermission().allows(StreetTraversalPermission.BICYCLE)) {
mode = TraverseMode.BICYCLE;
} else {
mode = TraverseMode.CAR;
}
RoutingRequest options = new RoutingRequest(mode);
options.setDummyRoutingContext(graph);
options.dominanceFunction = new DominanceFunction.EarliestArrival();
GenericDijkstra search = new GenericDijkstra(options);
search.setSkipEdgeStrategy(new ListedEdgesOnly(edges));
Set<Edge> usedEdges = new HashSet<Edge>();
for (Vertex vertex : startingVertices) {
State state = new State(vertex, options);
ShortestPathTree spt = search.getShortestPathTree(state);
for (Vertex endVertex : startingVertices) {
GraphPath path = spt.getPath(endVertex, false);
if (path != null) {
for (Edge edge : path.edges) {
usedEdges.add(edge);
}
}
}
}
for (Edge edge : edges) {
if (!usedEdges.contains(edge)) {
graph.removeEdge(edge);
}
}
}
use of org.opentripplanner.routing.spt.ShortestPathTree in project OpenTripPlanner by opentripplanner.
the class EarliestArrivalSearch method getShortestPathTree.
public ShortestPathTree getShortestPathTree(RoutingRequest options, double relTimeout, SearchTerminationStrategy terminationStrategy) {
// clone options before modifying, otherwise disabling resource limiting will cause
// SPT cache misses for subsequent requests.
options = options.clone();
// disable any resource limiting, which is algorithmically invalid here
options.maxTransfers = Integer.MAX_VALUE;
options.setMaxWalkDistance(Double.MAX_VALUE);
if (options.clampInitialWait < 0)
options.clampInitialWait = (60 * 30);
// impose search cutoff
final long maxt = maxDuration + options.clampInitialWait;
options.worstTime = options.dateTime + (options.arriveBy ? -maxt : maxt);
// SPT cache does not look at routing request in SPT to perform lookup,
// so it's OK to construct with the local cloned one
ShortestPathTree spt = new DominanceFunction.EarliestArrival().getNewShortestPathTree(options);
State initialState = new State(options);
spt.add(initialState);
BinHeap<State> pq = new BinHeap<State>();
pq.insert(initialState, 0);
while (!pq.empty()) {
State u = pq.extract_min();
Vertex u_vertex = u.getVertex();
if (!spt.visit(u))
continue;
Collection<Edge> edges = options.arriveBy ? u_vertex.getIncoming() : u_vertex.getOutgoing();
for (Edge edge : edges) {
for (State v = edge.traverse(u); v != null; v = v.getNextResult()) {
if (isWorstTimeExceeded(v, options)) {
continue;
}
if (spt.add(v)) {
// activeTime?
pq.insert(v, v.getActiveTime());
}
}
}
}
return spt;
}
use of org.opentripplanner.routing.spt.ShortestPathTree in project OpenTripPlanner by opentripplanner.
the class InterleavedBidirectionalHeuristic method streetSearch.
/**
* Explore the streets around the origin or target, recording the minimum weight of a path to each street vertex.
* When searching around the target, also retain the states that reach transit stops since we'll want to
* explore the transit network backward, in order to guide the main forward search.
*
* The main search always proceeds from the "origin" to the "target" (names remain unchanged in arriveBy mode).
* The reverse heuristic search always proceeds outward from the target (name remains unchanged in arriveBy).
*
* When the main search is departAfter:
* it gets outgoing edges and traverses them with arriveBy=false,
* the heuristic search gets incoming edges and traverses them with arriveBy=true,
* the heuristic destination street search also gets incoming edges and traverses them with arriveBy=true,
* the heuristic origin street search gets outgoing edges and traverses them with arriveBy=false.
*
* When main search is arriveBy:
* it gets incoming edges and traverses them with arriveBy=true,
* the heuristic search gets outgoing edges and traverses them with arriveBy=false,
* the heuristic destination street search also gets outgoing edges and traverses them with arriveBy=false,
* the heuristic origin street search gets incoming edges and traverses them with arriveBy=true.
* The streetSearch method traverses using the real traverse method rather than the lower bound traverse method
* because this allows us to keep track of the distance walked.
* Perhaps rather than tracking walk distance, we should just check the straight-line radius and
* only walk within that distance. This would avoid needing to call the main traversal functions.
*
* TODO what if the egress segment is by bicycle or car mode? This is no longer admissible.
*/
private TObjectDoubleMap<Vertex> streetSearch(RoutingRequest rr, boolean fromTarget, long abortTime) {
LOG.debug("Heuristic street search around the {}.", fromTarget ? "target" : "origin");
rr = rr.clone();
if (fromTarget) {
rr.setArriveBy(!rr.arriveBy);
}
// Create a map that returns Infinity when it does not contain a vertex.
TObjectDoubleMap<Vertex> vertices = new TObjectDoubleHashMap<>(100, 0.5f, Double.POSITIVE_INFINITY);
ShortestPathTree spt = new DominanceFunction.MinimumWeight().getNewShortestPathTree(rr);
// TODO use normal OTP search for this.
BinHeap<State> pq = new BinHeap<State>();
Vertex initVertex = fromTarget ? rr.rctx.target : rr.rctx.origin;
State initState = new State(initVertex, rr);
pq.insert(initState, 0);
while (!pq.empty()) {
if (abortTime < Long.MAX_VALUE && System.currentTimeMillis() > abortTime) {
return null;
}
State s = pq.extract_min();
Vertex v = s.getVertex();
// This is the lowest cost we will ever see for this vertex. We can record the cost to reach it.
if (v instanceof TransitStop) {
// place vertices on the transit queue so we can explore the transit network backward later.
if (fromTarget) {
double weight = s.getWeight();
transitQueue.insert(v, weight);
if (weight > maxWeightSeen) {
maxWeightSeen = weight;
}
}
continue;
}
// Record the cost to reach this vertex.
if (!vertices.containsKey(v)) {
// FIXME time or weight? is RR using right mode?
vertices.put(v, (int) s.getWeight());
}
for (Edge e : rr.arriveBy ? v.getIncoming() : v.getOutgoing()) {
// arriveBy has been set to match actual directional behavior in this subsearch.
// Walk cutoff will happen in the street edge traversal method.
State s1 = e.traverse(s);
if (s1 == null) {
continue;
}
if (spt.add(s1)) {
pq.insert(s1, s1.getWeight());
}
}
}
LOG.debug("Heuristric street search hit {} vertices.", vertices.size());
LOG.debug("Heuristric street search hit {} transit stops.", transitQueue.size());
return vertices;
}
use of org.opentripplanner.routing.spt.ShortestPathTree in project OpenTripPlanner by opentripplanner.
the class SurfaceResource method createSurface.
@POST
public Response createSurface(@QueryParam("cutoffMinutes") @DefaultValue("90") int cutoffMinutes, @QueryParam("routerId") String routerId) {
// Build the request
try {
// batch must be true
RoutingRequest req = buildRequest();
// routerId is optional -- select default graph if not set
Router router = otpServer.getRouter(routerId);
req.setRoutingContext(router.graph);
EarliestArrivalSearch sptService = new EarliestArrivalSearch();
sptService.maxDuration = (60 * cutoffMinutes);
ShortestPathTree spt = sptService.getShortestPathTree(req);
req.cleanup();
if (spt != null) {
TimeSurface surface = new TimeSurface(spt);
surface.params = Maps.newHashMap();
for (Map.Entry<String, List<String>> e : uriInfo.getQueryParameters().entrySet()) {
// include only the first instance of each query parameter
surface.params.put(e.getKey(), e.getValue().get(0));
}
surface.cutoffMinutes = cutoffMinutes;
otpServer.surfaceCache.add(surface);
// .created(URI)
return Response.ok().entity(new TimeSurfaceShort(surface)).build();
} else {
return Response.noContent().entity("NO SPT").build();
}
} catch (ParameterException pex) {
return Response.status(Response.Status.BAD_REQUEST).entity("BAD USER").build();
}
}
Aggregations