use of org.orekit.errors.OrekitException in project Orekit by CS-SI.
the class FieldEventState method findRoot.
/**
* Find a root in a bracketing interval.
*
* <p> When calling this method one of the following must be true. Either ga == 0, gb
* == 0, (ga < 0 and gb > 0), or (ga > 0 and gb < 0).
*
* @param interpolator that covers the interval.
* @param ta earliest possible time for root.
* @param ga g(ta).
* @param tb latest possible time for root.
* @param gb g(tb).
* @return if a zero crossing was found.
* @throws OrekitException if the event detector throws one
*/
private boolean findRoot(final FieldOrekitStepInterpolator<T> interpolator, final FieldAbsoluteDate<T> ta, final T ga, final FieldAbsoluteDate<T> tb, final T gb) throws OrekitException {
final T zero = ga.getField().getZero();
// check there appears to be a root in [ta, tb]
check(ga.getReal() == 0.0 || gb.getReal() == 0.0 || (ga.getReal() > 0.0 && gb.getReal() < 0.0) || (ga.getReal() < 0.0 && gb.getReal() > 0.0));
final T convergence = detector.getThreshold();
final int maxIterationCount = detector.getMaxIterationCount();
final BracketedUnivariateSolver<UnivariateFunction> solver = new BracketingNthOrderBrentSolver(0, convergence.getReal(), 0, 5);
// event time, just at or before the actual root.
FieldAbsoluteDate<T> beforeRootT = null;
T beforeRootG = zero.add(Double.NaN);
// time on the other side of the root.
// Initialized the the loop below executes once.
FieldAbsoluteDate<T> afterRootT = ta;
T afterRootG = zero;
// the ga == 0.0 case is handled by the loop below
if (ta.equals(tb)) {
// both non-zero but times are the same. Probably due to reset state
beforeRootT = ta;
beforeRootG = ga;
afterRootT = shiftedBy(beforeRootT, convergence);
afterRootG = g(interpolator.getInterpolatedState(afterRootT));
} else if (ga.getReal() != 0.0 && gb.getReal() == 0.0) {
// hard: ga != 0.0 and gb == 0.0
// look past gb by up to convergence to find next sign
// throw an exception if g(t) = 0.0 in [tb, tb + convergence]
beforeRootT = tb;
beforeRootG = gb;
afterRootT = shiftedBy(beforeRootT, convergence);
afterRootG = g(interpolator.getInterpolatedState(afterRootT));
} else if (ga.getReal() != 0.0) {
final T newGa = g(interpolator.getInterpolatedState(ta));
if (ga.getReal() > 0 != newGa.getReal() > 0) {
// both non-zero, step sign change at ta, possibly due to reset state
beforeRootT = ta;
beforeRootG = newGa;
afterRootT = minTime(shiftedBy(beforeRootT, convergence), tb);
afterRootG = g(interpolator.getInterpolatedState(afterRootT));
}
}
// loop to skip through "fake" roots, i.e. where g(t) = g'(t) = 0.0
// executed once if we didn't hit a special case above
FieldAbsoluteDate<T> loopT = ta;
T loopG = ga;
while ((afterRootG.getReal() == 0.0 || afterRootG.getReal() > 0.0 == g0Positive) && strictlyAfter(afterRootT, tb)) {
if (loopG.getReal() == 0.0) {
// ga == 0.0 and gb may or may not be 0.0
// handle the root at ta first
beforeRootT = loopT;
beforeRootG = loopG;
afterRootT = minTime(shiftedBy(beforeRootT, convergence), tb);
afterRootG = g(interpolator.getInterpolatedState(afterRootT));
} else {
// both non-zero, the usual case, use a root finder.
try {
// time zero for evaluating the function f. Needs to be final
final FieldAbsoluteDate<T> fT0 = loopT;
final UnivariateFunction f = dt -> {
try {
return g(interpolator.getInterpolatedState(fT0.shiftedBy(dt))).getReal();
} catch (OrekitException oe) {
throw new OrekitExceptionWrapper(oe);
}
};
// tb as a double for use in f
final T tbDouble = tb.durationFrom(fT0);
if (forward) {
final Interval interval = solver.solveInterval(maxIterationCount, f, 0, tbDouble.getReal());
beforeRootT = fT0.shiftedBy(interval.getLeftAbscissa());
beforeRootG = zero.add(interval.getLeftValue());
afterRootT = fT0.shiftedBy(interval.getRightAbscissa());
afterRootG = zero.add(interval.getRightValue());
} else {
final Interval interval = solver.solveInterval(maxIterationCount, f, tbDouble.getReal(), 0);
beforeRootT = fT0.shiftedBy(interval.getRightAbscissa());
beforeRootG = zero.add(interval.getRightValue());
afterRootT = fT0.shiftedBy(interval.getLeftAbscissa());
afterRootG = zero.add(interval.getLeftValue());
}
} catch (OrekitExceptionWrapper oew) {
throw oew.getException();
}
}
// assume tolerance is 1 ulp
if (beforeRootT.equals(afterRootT)) {
afterRootT = nextAfter(afterRootT);
afterRootG = g(interpolator.getInterpolatedState(afterRootT));
}
// check loop is making some progress
check((forward && afterRootT.compareTo(beforeRootT) > 0) || (!forward && afterRootT.compareTo(beforeRootT) < 0));
// setup next iteration
loopT = afterRootT;
loopG = afterRootG;
}
// figure out the result of root finding, and return accordingly
if (afterRootG.getReal() == 0.0 || afterRootG.getReal() > 0.0 == g0Positive) {
// loop gave up and didn't find any crossing within this step
return false;
} else {
// real crossing
check(beforeRootT != null && !Double.isNaN(beforeRootG.getReal()));
// variation direction, with respect to the integration direction
increasing = !g0Positive;
pendingEventTime = beforeRootT;
stopTime = beforeRootG.getReal() == 0.0 ? beforeRootT : afterRootT;
pendingEvent = true;
afterEvent = afterRootT;
afterG = afterRootG;
// check increasing set correctly
check(afterG.getReal() > 0 == increasing);
check(increasing == gb.getReal() >= ga.getReal());
return true;
}
}
use of org.orekit.errors.OrekitException in project Orekit by CS-SI.
the class KeplerianPropagator method writeReplace.
/**
* Replace the instance with a data transfer object for serialization.
* @return data transfer object that will be serialized
* @exception NotSerializableException if an additional state provider is not serializable
*/
private Object writeReplace() throws NotSerializableException {
try {
// managed states providers
final List<AdditionalStateProvider> serializableProviders = new ArrayList<AdditionalStateProvider>();
for (final AdditionalStateProvider provider : getAdditionalStateProviders()) {
if (provider instanceof Serializable) {
serializableProviders.add(provider);
} else {
throw new NotSerializableException(provider.getClass().getName());
}
}
// states transitions
final AbsoluteDate[] transitionDates;
final SpacecraftState[] allStates;
final SortedSet<TimeSpanMap.Transition<SpacecraftState>> transitions = states.getTransitions();
if (transitions.size() == 1 && transitions.first().getBefore() == transitions.first().getAfter()) {
// the single entry is a dummy one, without a real transition
// we ignore it completely
transitionDates = null;
allStates = null;
} else {
transitionDates = new AbsoluteDate[transitions.size()];
allStates = new SpacecraftState[transitions.size() + 1];
int i = 0;
for (final TimeSpanMap.Transition<SpacecraftState> transition : transitions) {
if (i == 0) {
// state before the first transition
allStates[i] = transition.getBefore();
}
transitionDates[i] = transition.getDate();
allStates[++i] = transition.getAfter();
}
}
return new DataTransferObject(getInitialState().getOrbit(), getAttitudeProvider(), getInitialState().getMu(), getInitialState().getMass(), transitionDates, allStates, serializableProviders.toArray(new AdditionalStateProvider[serializableProviders.size()]));
} catch (OrekitException orekitException) {
// this should never happen
throw new OrekitInternalError(null);
}
}
use of org.orekit.errors.OrekitException in project Orekit by CS-SI.
the class TLESeries method loadData.
/**
* {@inheritDoc}
*/
public void loadData(final InputStream input, final String name) throws IOException, OrekitException {
final BufferedReader r = new BufferedReader(new InputStreamReader(input, "UTF-8"));
try {
int lineNumber = 0;
String pendingLine = null;
for (String line = r.readLine(); line != null; line = r.readLine()) {
++lineNumber;
if (pendingLine == null) {
// we must wait for the second line
pendingLine = line;
} else {
// safety checks
if (!TLE.isFormatOK(pendingLine, line)) {
if (ignoreNonTLELines) {
// just shift one line
pendingLine = line;
continue;
} else {
throw new OrekitException(OrekitMessages.NOT_TLE_LINES, lineNumber - 1, lineNumber, pendingLine, line);
}
}
final TLE tle = new TLE(pendingLine, line);
if (filterSatelliteNumber < 0) {
if ((filterLaunchYear < 0) || ((tle.getLaunchYear() == filterLaunchYear) && (tle.getLaunchNumber() == filterLaunchNumber) && tle.getLaunchPiece().equals(filterLaunchPiece))) {
// we now know the number of the object to load
filterSatelliteNumber = tle.getSatelliteNumber();
}
}
availableSatNums.add(tle.getSatelliteNumber());
if (tle.getSatelliteNumber() == filterSatelliteNumber) {
// accept this TLE
tles.add(tle);
}
// we need to wait for two new lines
pendingLine = null;
}
}
if ((pendingLine != null) && !ignoreNonTLELines) {
// there is an unexpected last line
throw new OrekitException(OrekitMessages.MISSING_SECOND_TLE_LINE, lineNumber, pendingLine);
}
} finally {
r.close();
}
}
use of org.orekit.errors.OrekitException in project Orekit by CS-SI.
the class Geoid method getIntersectionPoint.
/**
* {@inheritDoc}
*
* <p> The intersection point is computed using a line search along the
* specified line. This is accurate when the geoid is slowly varying.
*/
@Override
public GeodeticPoint getIntersectionPoint(final Line lineInFrame, final Vector3D closeInFrame, final Frame frame, final AbsoluteDate date) throws OrekitException {
/*
* It is assumed that the geoid is slowly varying over it's entire
* surface. Therefore there will one local intersection.
*/
// transform to body frame
final Frame bodyFrame = this.getBodyFrame();
final Transform frameToBody = frame.getTransformTo(bodyFrame, date);
final Vector3D close = frameToBody.transformPosition(closeInFrame);
final Line lineInBodyFrame = frameToBody.transformLine(lineInFrame);
// set the line's direction so the solved for value is always positive
final Line line;
if (lineInBodyFrame.getAbscissa(close) < 0) {
line = lineInBodyFrame.revert();
} else {
line = lineInBodyFrame;
}
final ReferenceEllipsoid ellipsoid = this.getEllipsoid();
// calculate end points
// distance from line to center of earth, squared
final double d2 = line.pointAt(0.0).getNormSq();
// the minimum abscissa, squared
final double n = ellipsoid.getPolarRadius() + MIN_UNDULATION;
final double minAbscissa2 = n * n - d2;
// smaller end point of the interval = 0.0 or intersection with
// min_undulation sphere
final double lowPoint = FastMath.sqrt(FastMath.max(minAbscissa2, 0.0));
// the maximum abscissa, squared
final double x = ellipsoid.getEquatorialRadius() + MAX_UNDULATION;
final double maxAbscissa2 = x * x - d2;
// larger end point of the interval
final double highPoint = FastMath.sqrt(maxAbscissa2);
// line search function
final UnivariateFunction heightFunction = new UnivariateFunction() {
@Override
public double value(final double x) {
try {
final GeodeticPoint geodetic = transform(line.pointAt(x), bodyFrame, date);
return geodetic.getAltitude();
} catch (OrekitException e) {
// due to frame transform -> re-throw
throw new RuntimeException(e);
}
}
};
// compute answer
if (maxAbscissa2 < 0) {
// ray does not pierce bounding sphere -> no possible intersection
return null;
}
// solve line search problem to find the intersection
final UnivariateSolver solver = new BracketingNthOrderBrentSolver();
try {
final double abscissa = solver.solve(MAX_EVALUATIONS, heightFunction, lowPoint, highPoint);
// return intersection point
return this.transform(line.pointAt(abscissa), bodyFrame, date);
} catch (MathRuntimeException e) {
// no intersection
return null;
}
}
use of org.orekit.errors.OrekitException in project Orekit by CS-SI.
the class Geoid method getIntersectionPoint.
/**
* {@inheritDoc}
*
* <p> The intersection point is computed using a line search along the
* specified line. This is accurate when the geoid is slowly varying.
*/
@Override
public <T extends RealFieldElement<T>> FieldGeodeticPoint<T> getIntersectionPoint(final FieldLine<T> lineInFrame, final FieldVector3D<T> closeInFrame, final Frame frame, final FieldAbsoluteDate<T> date) throws OrekitException {
final Field<T> field = date.getField();
/*
* It is assumed that the geoid is slowly varying over it's entire
* surface. Therefore there will one local intersection.
*/
// transform to body frame
final Frame bodyFrame = this.getBodyFrame();
final FieldTransform<T> frameToBody = frame.getTransformTo(bodyFrame, date);
final FieldVector3D<T> close = frameToBody.transformPosition(closeInFrame);
final FieldLine<T> lineInBodyFrame = frameToBody.transformLine(lineInFrame);
// set the line's direction so the solved for value is always positive
final FieldLine<T> line;
if (lineInBodyFrame.getAbscissa(close).getReal() < 0) {
line = lineInBodyFrame.revert();
} else {
line = lineInBodyFrame;
}
final ReferenceEllipsoid ellipsoid = this.getEllipsoid();
// calculate end points
// distance from line to center of earth, squared
final T d2 = line.pointAt(0.0).getNormSq();
// the minimum abscissa, squared
final double n = ellipsoid.getPolarRadius() + MIN_UNDULATION;
final T minAbscissa2 = d2.negate().add(n * n);
// smaller end point of the interval = 0.0 or intersection with
// min_undulation sphere
final T lowPoint = minAbscissa2.getReal() < 0 ? field.getZero() : minAbscissa2.sqrt();
// the maximum abscissa, squared
final double x = ellipsoid.getEquatorialRadius() + MAX_UNDULATION;
final T maxAbscissa2 = d2.negate().add(x * x);
// larger end point of the interval
final T highPoint = maxAbscissa2.sqrt();
// line search function
final RealFieldUnivariateFunction<T> heightFunction = z -> {
try {
final FieldGeodeticPoint<T> geodetic = transform(line.pointAt(z), bodyFrame, date);
return geodetic.getAltitude();
} catch (OrekitException e) {
// due to frame transform -> re-throw
throw new RuntimeException(e);
}
};
// compute answer
if (maxAbscissa2.getReal() < 0) {
// ray does not pierce bounding sphere -> no possible intersection
return null;
}
// solve line search problem to find the intersection
final FieldBracketingNthOrderBrentSolver<T> solver = new FieldBracketingNthOrderBrentSolver<>(field.getZero().add(1.0e-14), field.getZero().add(1.0e-6), field.getZero().add(1.0e-15), 5);
try {
final T abscissa = solver.solve(MAX_EVALUATIONS, heightFunction, lowPoint, highPoint, AllowedSolution.ANY_SIDE);
// return intersection point
return this.transform(line.pointAt(abscissa), bodyFrame, date);
} catch (MathRuntimeException e) {
// no intersection
return null;
}
}
Aggregations