use of org.orekit.utils.FieldPVCoordinates in project Orekit by CS-SI.
the class TransformTest method testTransPV.
@Test
public void testTransPV() {
RandomGenerator rnd = new Well19937a(0x73d5554d99427af0l);
for (int i = 0; i < 10; ++i) {
// random position, velocity and acceleration
Vector3D pos = randomVector(1.0e3, rnd);
Vector3D vel = randomVector(1.0, rnd);
Vector3D acc = randomVector(1.0e-3, rnd);
PVCoordinates pvOne = new PVCoordinates(pos, vel, acc);
// random transform
Vector3D transPos = randomVector(1.0e3, rnd);
Vector3D transVel = randomVector(1.0, rnd);
Vector3D transAcc = randomVector(1.0e-3, rnd);
Transform tr = new Transform(AbsoluteDate.J2000_EPOCH, transPos, transVel, transAcc);
double dt = 1;
// we should obtain
Vector3D good = tr.transformPosition(pos.add(new Vector3D(dt, vel))).add(new Vector3D(dt, transVel));
// we have
PVCoordinates pvTwo = tr.transformPVCoordinates(pvOne);
Vector3D result = pvTwo.getPosition().add(new Vector3D(dt, pvTwo.getVelocity()));
checkVector(good, result, 1.0e-15);
FieldPVCoordinates<Decimal64> fieldPVOne = new FieldPVCoordinates<Decimal64>(new FieldVector3D<Decimal64>(Decimal64Field.getInstance(), pvOne.getPosition()), new FieldVector3D<Decimal64>(Decimal64Field.getInstance(), pvOne.getVelocity()), new FieldVector3D<Decimal64>(Decimal64Field.getInstance(), pvOne.getAcceleration()));
FieldPVCoordinates<Decimal64> fieldPVTwo = tr.transformPVCoordinates(fieldPVOne);
FieldVector3D<Decimal64> fieldResult = fieldPVTwo.getPosition().add(new FieldVector3D<Decimal64>(dt, fieldPVTwo.getVelocity()));
checkVector(good, fieldResult.toVector3D(), 1.0e-15);
TimeStampedFieldPVCoordinates<Decimal64> fieldTPVOne = new TimeStampedFieldPVCoordinates<Decimal64>(tr.getDate(), new FieldVector3D<Decimal64>(Decimal64Field.getInstance(), pvOne.getPosition()), new FieldVector3D<Decimal64>(Decimal64Field.getInstance(), pvOne.getVelocity()), new FieldVector3D<Decimal64>(Decimal64Field.getInstance(), pvOne.getAcceleration()));
TimeStampedFieldPVCoordinates<Decimal64> fieldTPVTwo = tr.transformPVCoordinates(fieldTPVOne);
FieldVector3D<Decimal64> fieldTResult = fieldTPVTwo.getPosition().add(new FieldVector3D<Decimal64>(dt, fieldTPVTwo.getVelocity()));
checkVector(good, fieldTResult.toVector3D(), 1.0e-15);
// test inverse
Vector3D resultvel = tr.getInverse().transformPVCoordinates(pvTwo).getVelocity();
checkVector(resultvel, vel, 1.0e-15);
}
}
use of org.orekit.utils.FieldPVCoordinates in project Orekit by CS-SI.
the class FieldTransformTest method doTestRotPV.
private <T extends RealFieldElement<T>> void doTestRotPV(Field<T> field) {
RandomGenerator rnd = new Well19937a(0x73d5554d99427af0l);
for (int i = 0; i < 10; ++i) {
// Random instant rotation
FieldRotation<T> instantRot = randomRotation(field, rnd);
FieldVector3D<T> normAxis = instantRot.getAxis(RotationConvention.VECTOR_OPERATOR);
T w = instantRot.getAngle().abs().divide(Constants.JULIAN_DAY);
// random rotation
FieldRotation<T> rot = randomRotation(field, rnd);
// so we have a transform
FieldTransform<T> tr = new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), rot, new FieldVector3D<>(w, normAxis));
// random position, velocity, acceleration
FieldVector3D<T> pos = randomVector(field, 1.0e3, rnd);
FieldVector3D<T> vel = randomVector(field, 1.0, rnd);
FieldVector3D<T> acc = randomVector(field, 1.0e-3, rnd);
FieldPVCoordinates<T> pvOne = new FieldPVCoordinates<>(pos, vel, acc);
// we obtain
FieldPVCoordinates<T> pvTwo = tr.transformPVCoordinates(pvOne);
// test inverse
FieldVector3D<T> resultvel = tr.getInverse().transformPVCoordinates(pvTwo).getVelocity();
checkVector(resultvel, vel, 1.0e-15);
}
}
use of org.orekit.utils.FieldPVCoordinates in project Orekit by CS-SI.
the class FieldTransformTest method doTestAccelerationComposition.
private <T extends RealFieldElement<T>> void doTestAccelerationComposition(Field<T> field) {
RandomGenerator random = new Well19937a(0x41fdd07d6c9e9f65l);
FieldVector3D<T> p1 = randomVector(field, 1.0e3, random);
FieldVector3D<T> v1 = randomVector(field, 1.0, random);
FieldVector3D<T> a1 = randomVector(field, 1.0e-3, random);
FieldRotation<T> r1 = randomRotation(field, random);
FieldVector3D<T> o1 = randomVector(field, 0.1, random);
FieldVector3D<T> p2 = randomVector(field, 1.0e3, random);
FieldVector3D<T> v2 = randomVector(field, 1.0, random);
FieldVector3D<T> a2 = randomVector(field, 1.0e-3, random);
FieldRotation<T> r2 = randomRotation(field, random);
FieldVector3D<T> o2 = randomVector(field, 0.1, random);
FieldTransform<T> t1 = new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), p1, v1, a1), new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), r1, o1));
FieldTransform<T> t2 = new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), p2, v2, a2), new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), r2, o2));
FieldTransform<T> t12 = new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), t1, t2);
FieldVector3D<T> q = randomVector(field, 1.0e3, random);
FieldVector3D<T> qDot = randomVector(field, 1.0, random);
FieldVector3D<T> qDotDot = randomVector(field, 1.0e-3, random);
FieldPVCoordinates<T> pva0 = new FieldPVCoordinates<>(q, qDot, qDotDot);
FieldPVCoordinates<T> pva1 = t1.transformPVCoordinates(pva0);
FieldPVCoordinates<T> pva2 = t2.transformPVCoordinates(pva1);
FieldPVCoordinates<T> pvac = t12.transformPVCoordinates(pva0);
checkVector(pva2.getPosition(), pvac.getPosition(), 1.0e-15);
checkVector(pva2.getVelocity(), pvac.getVelocity(), 1.0e-15);
checkVector(pva2.getAcceleration(), pvac.getAcceleration(), 1.0e-15);
// despite neither raw transforms have angular acceleration,
// the combination does have an angular acceleration,
// it is due to the cross product Ω₁ ⨯ Ω₂
Assert.assertEquals(0.0, t1.getAngular().getRotationAcceleration().getNorm().getReal(), 1.0e-15);
Assert.assertEquals(0.0, t2.getAngular().getRotationAcceleration().getNorm().getReal(), 1.0e-15);
Assert.assertTrue(t12.getAngular().getRotationAcceleration().getNorm().getReal() > 0.01);
Assert.assertEquals(0.0, t12.freeze().getCartesian().getVelocity().getNorm().getReal(), 1.0e-15);
Assert.assertEquals(0.0, t12.freeze().getCartesian().getAcceleration().getNorm().getReal(), 1.0e-15);
Assert.assertEquals(0.0, t12.freeze().getAngular().getRotationRate().getNorm().getReal(), 1.0e-15);
Assert.assertEquals(0.0, t12.freeze().getAngular().getRotationAcceleration().getNorm().getReal(), 1.0e-15);
}
use of org.orekit.utils.FieldPVCoordinates in project Orekit by CS-SI.
the class FieldTransformTest method doTestRandomComposition.
private <T extends RealFieldElement<T>> void doTestRandomComposition(Field<T> field) {
RandomGenerator random = new Well19937a(0x171c79e323a1123l);
for (int i = 0; i < 20; ++i) {
// build a complex transform by composing primitive ones
int n = random.nextInt(20);
@SuppressWarnings("unchecked") FieldTransform<T>[] transforms = (FieldTransform<T>[]) Array.newInstance(FieldTransform.class, n);
FieldTransform<T> combined = FieldTransform.getIdentity(field);
for (int k = 0; k < n; ++k) {
transforms[k] = random.nextBoolean() ? new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), randomVector(field, 1.0e3, random), randomVector(field, 1.0, random), randomVector(field, 1.0e-3, random)) : new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), randomRotation(field, random), randomVector(field, 0.01, random), randomVector(field, 1.0e-4, random));
combined = new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), combined, transforms[k]);
}
// check the composition
for (int j = 0; j < 10; ++j) {
FieldVector3D<T> a = randomVector(field, 1.0, random);
FieldVector3D<T> b = randomVector(field, 1.0e3, random);
FieldPVCoordinates<T> c = new FieldPVCoordinates<>(randomVector(field, 1.0e3, random), randomVector(field, 1.0, random), randomVector(field, 1.0e-3, random));
FieldVector3D<T> aRef = a;
FieldVector3D<T> bRef = b;
FieldPVCoordinates<T> cRef = c;
for (int k = 0; k < n; ++k) {
aRef = transforms[k].transformVector(aRef);
bRef = transforms[k].transformPosition(bRef);
cRef = transforms[k].transformPVCoordinates(cRef);
}
FieldVector3D<T> aCombined = combined.transformVector(a);
FieldVector3D<T> bCombined = combined.transformPosition(b);
FieldPVCoordinates<T> cCombined = combined.transformPVCoordinates(c);
checkVector(aRef, aCombined, 3.0e-15);
checkVector(bRef, bCombined, 5.0e-15);
checkVector(cRef.getPosition(), cCombined.getPosition(), 1.0e-14);
checkVector(cRef.getVelocity(), cCombined.getVelocity(), 1.0e-14);
checkVector(cRef.getAcceleration(), cCombined.getAcceleration(), 1.0e-14);
}
}
}
use of org.orekit.utils.FieldPVCoordinates in project Orekit by CS-SI.
the class FieldTransformTest method doTestTransPV.
private <T extends RealFieldElement<T>> void doTestTransPV(Field<T> field) {
RandomGenerator rnd = new Well19937a(0x73d5554d99427af0l);
for (int i = 0; i < 10; ++i) {
// random position, velocity and acceleration
FieldVector3D<T> pos = randomVector(field, 1.0e3, rnd);
FieldVector3D<T> vel = randomVector(field, 1.0, rnd);
FieldVector3D<T> acc = randomVector(field, 1.0e-3, rnd);
FieldPVCoordinates<T> pvOne = new FieldPVCoordinates<>(pos, vel, acc);
// random transform
FieldVector3D<T> transPos = randomVector(field, 1.0e3, rnd);
FieldVector3D<T> transVel = randomVector(field, 1.0, rnd);
FieldVector3D<T> transAcc = randomVector(field, 1.0e-3, rnd);
FieldTransform<T> tr = new FieldTransform<>(FieldAbsoluteDate.getJ2000Epoch(field), transPos, transVel, transAcc);
double dt = 1;
// we should obtain
FieldVector3D<T> good = tr.transformPosition(pos.add(new FieldVector3D<>(dt, vel))).add(new FieldVector3D<>(dt, transVel));
// we have
FieldPVCoordinates<T> pvTwo = tr.transformPVCoordinates(pvOne);
FieldVector3D<T> result = pvTwo.getPosition().add(new FieldVector3D<>(dt, pvTwo.getVelocity()));
checkVector(good, result, 1.0e-15);
// test inverse
FieldVector3D<T> resultvel = tr.getInverse().transformPVCoordinates(pvTwo).getVelocity();
checkVector(resultvel, vel, 1.0e-15);
}
}
Aggregations