use of org.rcsb.mmtf.api.StructureDataInterface in project mmtf-spark by sbl-sdsc.
the class StructureToPolymerSequences method call.
@Override
public Iterator<Tuple2<String, String>> call(Tuple2<String, StructureDataInterface> t) throws Exception {
StructureDataInterface structure = t._2;
List<Tuple2<String, String>> sequences = new ArrayList<>();
Set<String> seqSet = new HashSet<>();
// precalculate indices
int[] chainToEntityIndex = getChainToEntityIndex(structure);
for (int i = 0; i < structure.getChainsPerModel()[0]; i++) {
boolean polymer = structure.getEntityType(chainToEntityIndex[i]).equals("polymer");
if (polymer) {
String key = t._1;
// remove any previous chain id information
if (key.contains(".")) {
key = key.substring(0, key.indexOf("."));
}
key += ".";
if (useChainIdInsteadOfChainName) {
key += structure.getChainIds()[i];
} else {
key += structure.getChainNames()[i];
}
if (removeDuplicates) {
if (seqSet.contains(structure.getEntitySequence(chainToEntityIndex[i]))) {
continue;
}
seqSet.add(structure.getEntitySequence(chainToEntityIndex[i]));
}
sequences.add(new Tuple2<String, String>(key, structure.getEntitySequence(chainToEntityIndex[i])));
}
}
return sequences.iterator();
}
use of org.rcsb.mmtf.api.StructureDataInterface in project mmtf-spark by sbl-sdsc.
the class StructureToProteinDimers method getCBetaAtomsDistanceBoxes.
private static List<DistanceBox<Integer>> getCBetaAtomsDistanceBoxes(List<StructureDataInterface> chains, double cutoffDistance) {
List<DistanceBox<Integer>> distanceBoxes = new ArrayList<DistanceBox<Integer>>();
for (int i = 0; i < chains.size(); i++) {
StructureDataInterface tmp = chains.get(i);
DistanceBox<Integer> newBox = new DistanceBox<Integer>(cutoffDistance);
int groupIndex = 0;
int atomIndex = 0;
for (int k = 0; k < tmp.getGroupsPerChain()[0]; k++) {
int groupType = tmp.getGroupTypeIndices()[groupIndex];
for (int m = 0; m < tmp.getNumAtomsInGroup(groupType); m++) {
String atomName = tmp.getGroupAtomNames(groupType)[m];
if (atomName.equals("CB")) {
double xCoord = tmp.getxCoords()[atomIndex];
double yCoord = tmp.getyCoords()[atomIndex];
double zCoord = tmp.getzCoords()[atomIndex];
Point3d newPoint = new Point3d(xCoord, yCoord, zCoord);
newBox.addPoint(newPoint, atomIndex);
}
atomIndex++;
}
groupIndex++;
}
distanceBoxes.add(newBox);
}
return distanceBoxes;
}
use of org.rcsb.mmtf.api.StructureDataInterface in project mmtf-spark by sbl-sdsc.
the class MapToProteinDimers method main.
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName(MapToProteinDimers.class.getSimpleName());
JavaSparkContext sc = new JavaSparkContext(conf);
// single protein chain 5IBZ
List<String> pdbIds = Arrays.asList("5IBZ");
JavaPairRDD<String, StructureDataInterface> pdb = MmtfReader.downloadFullMmtfFiles(pdbIds, sc);
// if distance between C-beta atoms is less than the cutoff distance, two chains are considered in contact
double cutoffDistance = 8;
// minimum number of contacts to qualify as an interaction
int minContacts = 20;
pdb = // convert to bioassembly (homotetramer with D2 symmetry)
pdb.flatMapToPair(new StructureToBioassembly()).flatMapToPair(// find all dimers with in bioassembly
new StructureToProteinDimers(cutoffDistance, minContacts));
System.out.println("Number of dimers in 5IBZ bioassembly: " + pdb.count());
sc.close();
}
use of org.rcsb.mmtf.api.StructureDataInterface in project mmtf-spark by sbl-sdsc.
the class WriteMmtfFullUncompressed method main.
public static void main(String[] args) throws FileNotFoundException {
String path = MmtfReader.getMmtfFullPath();
long start = System.nanoTime();
// instantiate Spark. Each Spark application needs these two lines of code.
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName(WriteMmtfFullUncompressed.class.getSimpleName());
JavaSparkContext sc = new JavaSparkContext(conf);
// read all PDB entries from a local Hadoop sequence file
JavaPairRDD<String, StructureDataInterface> pdb = MmtfReader.readSequenceFile(path, sc);
System.out.println("# structures: " + pdb.count());
// write an uncompressed Hadoop sequence file
boolean compressed = false;
MmtfWriter.writeSequenceFile(path + "_uncompressed", sc, pdb, compressed);
// close Spark
sc.close();
long end = System.nanoTime();
System.out.println((end - start) / 1E9 + " sec.");
}
use of org.rcsb.mmtf.api.StructureDataInterface in project mmtf-spark by sbl-sdsc.
the class StructureToBioassembly method call.
@Override
public Iterator<Tuple2<String, StructureDataInterface>> call(Tuple2<String, StructureDataInterface> t) throws Exception {
StructureDataInterface structure = t._2;
// Map<Integer, Integer> atomMap = new HashMap<>();
List<Tuple2<String, StructureDataInterface>> resList = new ArrayList<>();
// for each of them, create one structure.
for (int i = 0; i < structure.getNumBioassemblies(); i++) {
// initiate the bioassembly structure.
AdapterToStructureData bioAssembly = new AdapterToStructureData();
// set the structureID.
String structureId = structure.getStructureId() + "-BioAssembly" + structure.getBioassemblyName(i);
int totAtoms = 0, totBonds = 0, totGroups = 0, totChains = 0, totModels = 0;
int numTrans = structure.getNumTransInBioassembly(i);
totModels = structure.getNumModels();
int[][] bioChainList = new int[numTrans][];
double[][] transMatrix = new double[numTrans][];
// calculate the total data we will use to initialize the structure.
for (int ii = 0; ii < numTrans; ii++) {
bioChainList[ii] = structure.getChainIndexListForTransform(i, ii);
transMatrix[ii] = structure.getMatrixForTransform(i, ii);
for (int j = 0; j < totModels; j++) {
totChains += bioChainList[ii].length;
// System.out.println(bioChainList[ii].length);
for (int k = 0, groupCounter = 0; k < structure.getChainsPerModel()[j]; k++) {
boolean adding = false;
for (int currChain : bioChainList[ii]) {
if (currChain == k)
adding = true;
}
if (adding) {
// System.out.println("adding groups");
totGroups += structure.getGroupsPerChain()[k];
}
for (int h = 0; h < structure.getGroupsPerChain()[k]; h++, groupCounter++) {
if (adding) {
int groupIndex = structure.getGroupTypeIndices()[groupCounter];
totAtoms += structure.getNumAtomsInGroup(groupIndex);
totBonds += structure.getGroupBondOrders(groupIndex).length;
}
}
}
}
}
// init
// System.out.println("Initializing the structure with\n"
// + " totModel = " + totModels + ", totChains = " + totChains + ", totGroups = " + totGroups + ", totAtoms = "
// + totAtoms + ", totBonds = " + totBonds + ", name : " + structureId);
bioAssembly.initStructure(totBonds, totAtoms, totGroups, totChains, totModels, structureId);
DecoderUtils.addXtalographicInfo(structure, bioAssembly);
DecoderUtils.addHeaderInfo(structure, bioAssembly);
/*
* Now we have bioChainList and transMatrix.
* bioChainList[i] is the ith trans' list of chains it has.
* transMatrix[i] is the matrix that is going to be applied on those chains.
*/
// initialize the indices.
int modelIndex = 0;
int chainIndex = 0;
int groupIndex = 0;
int atomIndex = 0;
int chainCounter = 0;
// loop through models
for (int ii = 0; ii < structure.getNumModels(); ii++) {
// precalculate indices
int numChainsPerModel = structure.getChainsPerModel()[modelIndex] * numTrans;
bioAssembly.setModelInfo(modelIndex, numChainsPerModel);
int[] chainToEntityIndex = getChainToEntityIndex(structure);
// loop through chains
for (int j = 0; j < structure.getChainsPerModel()[modelIndex]; j++) {
// loop through each trans
int currGroupIndex = groupIndex;
int currAtomIndex = atomIndex;
for (int k = 0; k < numTrans; k++) {
// get the currChainList that needs to be added
int[] currChainList = bioChainList[k];
double[] currMatrix = transMatrix[k];
boolean addThisChain = false;
for (int currChain : currChainList) {
if (currChain == j)
addThisChain = true;
}
groupIndex = currGroupIndex;
atomIndex = currAtomIndex;
float[] xCoords = structure.getxCoords();
float[] yCoords = structure.getyCoords();
float[] zCoords = structure.getzCoords();
float[] floatMatrix = Floats.toArray(Doubles.asList(currMatrix));
Matrix4f m = new Matrix4f(floatMatrix);
if (addThisChain) {
int entityToChainIndex = chainToEntityIndex[chainIndex];
// System.out.println("adding chain : " + chainIndex);
// TODO
// not sure
bioAssembly.setEntityInfo(new int[] { chainCounter }, structure.getEntitySequence(entityToChainIndex), structure.getEntityDescription(entityToChainIndex), structure.getEntityType(entityToChainIndex));
bioAssembly.setChainInfo(structure.getChainIds()[chainIndex], structure.getChainNames()[chainIndex], structure.getGroupsPerChain()[chainIndex]);
chainCounter++;
}
// loop through the groups in the chain
for (int jj = 0; jj < structure.getGroupsPerChain()[chainIndex]; jj++) {
int currgroup = structure.getGroupTypeIndices()[groupIndex];
if (addThisChain) {
bioAssembly.setGroupInfo(structure.getGroupName(currgroup), structure.getGroupIds()[groupIndex], structure.getInsCodes()[groupIndex], structure.getGroupChemCompType(currgroup), structure.getNumAtomsInGroup(currgroup), structure.getGroupBondOrders(currgroup).length, structure.getGroupSingleLetterCode(currgroup), structure.getGroupSequenceIndices()[groupIndex], structure.getSecStructList()[groupIndex]);
}
for (int kk = 0; kk < structure.getNumAtomsInGroup(currgroup); kk++) {
// System.out.println("currgroup : " + currgroup + " curratom : " + kk);
if (addThisChain) {
Point3f p1 = new Point3f(xCoords[atomIndex], yCoords[atomIndex], zCoords[atomIndex]);
m.transform(p1);
// System.out.println(kk + " " + currgroup);
bioAssembly.setAtomInfo(structure.getGroupAtomNames(currgroup)[kk], structure.getAtomIds()[atomIndex], structure.getAltLocIds()[atomIndex], p1.x, p1.y, p1.z, structure.getOccupancies()[atomIndex], structure.getbFactors()[atomIndex], structure.getGroupElementNames(currgroup)[kk], structure.getGroupAtomCharges(currgroup)[kk]);
}
// inc the atomIndex
atomIndex++;
}
if (addThisChain) {
for (int l = 0; l < structure.getGroupBondOrders(currgroup).length; l++) {
// System.out.println(structure.getGroupBondOrders(currgroup).length + " " + l);
int bondIndOne = structure.getGroupBondIndices(currgroup)[l * 2];
int bondIndTwo = structure.getGroupBondIndices(currgroup)[l * 2 + 1];
int bondOrder = structure.getGroupBondOrders(currgroup)[l];
bioAssembly.setGroupBond(bondIndOne, bondIndTwo, bondOrder);
}
}
// inc the groupIndex
groupIndex++;
}
if (addThisChain) {
// Add inter-group bond info
// for(int l = 0; l < structure.getInterGroupBondOrders().length; l++){
// int bondIndOne = structure.getInterGroupBondIndices()[l*2];
// int bondIndTwo = structure.getInterGroupBondIndices()[l*2+1];
// int bondOrder = structure.getInterGroupBondOrders()[l];
// Integer indexOne = atomMap.get(bondIndOne);
// if (indexOne != null) {
// Integer indexTwo = atomMap.get(bondIndTwo);
// if (indexTwo != null) {
// bioAssembly.setInterGroupBond(indexOne, indexTwo, bondOrder);
// }
// }
}
}
// inc the chainIndex
chainIndex++;
}
// inc the modelIndex
modelIndex++;
}
bioAssembly.finalizeStructure();
resList.add(new Tuple2<String, StructureDataInterface>(structureId, bioAssembly));
}
return resList.iterator();
}
Aggregations