use of javax.vecmath.Point3f in project mmtf-spark by sbl-sdsc.
the class StructureToBioassembly2 method call.
@Override
public Iterator<Tuple2<String, StructureDataInterface>> call(Tuple2<String, StructureDataInterface> t) throws Exception {
StructureDataInterface structure = t._2;
// Map<Integer, Integer> atomMap = new HashMap<>();
List<Tuple2<String, StructureDataInterface>> resList = new ArrayList<>();
// for each of them, create one structure.
for (int i = 0; i < structure.getNumBioassemblies(); i++) {
int[] chainsPerModel = new int[structure.getNumModels()];
// initiate the bioassembly structure.
AdapterToStructureData bioAssembly = new AdapterToStructureData();
// set the structureID.
String structureId = structure.getStructureId() + "-BioAssembly" + structure.getBioassemblyName(i);
int totAtoms = 0, totBonds = 0, totGroups = 0, totChains = 0, totModels = 0;
int numTrans = structure.getNumTransInBioassembly(i);
totModels = structure.getNumModels();
int[][] bioChainList = new int[numTrans][];
double[][] transMatrix = new double[numTrans][];
// calculate the total data we will use to initialize the structure.
for (int ii = 0; ii < numTrans; ii++) {
bioChainList[ii] = structure.getChainIndexListForTransform(i, ii);
transMatrix[ii] = structure.getMatrixForTransform(i, ii);
for (int j = 0; j < totModels; j++) {
totChains += bioChainList[ii].length;
chainsPerModel[j] += bioChainList[ii].length;
// System.out.println(bioChainList[ii].length + " " + Arrays.toString(bioChainList[ii]));
for (int k = 0, groupCounter = 0; k < structure.getChainsPerModel()[j]; k++) {
boolean adding = false;
for (int currChain : bioChainList[ii]) {
if (currChain == k)
adding = true;
}
if (adding) {
// System.out.println("adding groups");
totGroups += structure.getGroupsPerChain()[k];
}
for (int h = 0; h < structure.getGroupsPerChain()[k]; h++, groupCounter++) {
if (adding) {
int groupIndex = structure.getGroupTypeIndices()[groupCounter];
totAtoms += structure.getNumAtomsInGroup(groupIndex);
totBonds += structure.getGroupBondOrders(groupIndex).length;
}
}
}
}
}
// init
// System.out.println("Initializing the structure with\n"
// + " totModel = " + totModels + ", totChains = " + totChains + ", totGroups = " + totGroups + ", totAtoms = "
// + totAtoms + ", totBonds = " + totBonds + ", name : " + structureId);
bioAssembly.initStructure(totBonds, totAtoms, totGroups, totChains, totModels, structureId);
DecoderUtils.addXtalographicInfo(structure, bioAssembly);
DecoderUtils.addHeaderInfo(structure, bioAssembly);
/*
* Now we have bioChainList and transMatrix.
* bioChainList[i] is the ith trans' list of chains it has.
* transMatrix[i] is the matrix that is going to be applied on those chains.
*/
// initialize the indices.
int modelIndex = 0;
int chainIndex = 0;
int groupIndex = 0;
int atomIndex = 0;
int chainCounter = 0;
// loop through models
for (int ii = 0; ii < structure.getNumModels(); ii++) {
// precalculate indices
// this number is not correct if BA has fewer chains than the AU
// int numChainsPerModel = structure.getChainsPerModel()[modelIndex] * numTrans;
int numChainsPerModel = chainsPerModel[ii];
System.out.println("numChainsPerModel: " + numChainsPerModel);
bioAssembly.setModelInfo(modelIndex, numChainsPerModel);
int[] chainToEntityIndex = getChainToEntityIndex(structure);
// loop through chains
for (int j = 0; j < structure.getChainsPerModel()[modelIndex]; j++) {
// loop through each trans
int currGroupIndex = groupIndex;
int currAtomIndex = atomIndex;
for (int k = 0; k < numTrans; k++) {
// get the currChainList that needs to be added
int[] currChainList = bioChainList[k];
double[] currMatrix = transMatrix[k];
boolean addThisChain = false;
for (int currChain : currChainList) {
if (currChain == j)
addThisChain = true;
}
groupIndex = currGroupIndex;
atomIndex = currAtomIndex;
float[] xCoords = structure.getxCoords();
float[] yCoords = structure.getyCoords();
float[] zCoords = structure.getzCoords();
// float[] floatMatrix = Floats.toArray(Doubles.asList(currMatrix));
// Matrix4f m = new Matrix4f(floatMatrix);
Matrix4d md = new Matrix4d(currMatrix);
if (addThisChain) {
int entityToChainIndex = chainToEntityIndex[chainIndex];
// System.out.println("adding chain : " + chainIndex);
// TODO
// not sure
bioAssembly.setEntityInfo(new int[] { chainCounter }, structure.getEntitySequence(entityToChainIndex), structure.getEntityDescription(entityToChainIndex), structure.getEntityType(entityToChainIndex));
// TODO create unique chain ids
bioAssembly.setChainInfo(structure.getChainIds()[chainIndex] + (k + 1), structure.getChainNames()[chainIndex] + (k + 1), // bioAssembly.setChainInfo(structure.getChainIds()[chainIndex], structure.getChainNames()[chainIndex],
structure.getGroupsPerChain()[chainIndex]);
chainCounter++;
}
// loop through the groups in the chain
for (int jj = 0; jj < structure.getGroupsPerChain()[chainIndex]; jj++) {
int currgroup = structure.getGroupTypeIndices()[groupIndex];
if (addThisChain) {
bioAssembly.setGroupInfo(structure.getGroupName(currgroup), structure.getGroupIds()[groupIndex], structure.getInsCodes()[groupIndex], structure.getGroupChemCompType(currgroup), structure.getNumAtomsInGroup(currgroup), structure.getGroupBondOrders(currgroup).length, structure.getGroupSingleLetterCode(currgroup), structure.getGroupSequenceIndices()[groupIndex], structure.getSecStructList()[groupIndex]);
}
for (int kk = 0; kk < structure.getNumAtomsInGroup(currgroup); kk++) {
// System.out.println("currgroup : " + currgroup + " curratom : " + kk);
if (addThisChain) {
Point3f p1 = new Point3f(xCoords[atomIndex], yCoords[atomIndex], zCoords[atomIndex]);
// m.transform(p1);
md.transform(p1);
// System.out.println(kk + " " + currgroup);
bioAssembly.setAtomInfo(structure.getGroupAtomNames(currgroup)[kk], structure.getAtomIds()[atomIndex], structure.getAltLocIds()[atomIndex], p1.x, p1.y, p1.z, structure.getOccupancies()[atomIndex], structure.getbFactors()[atomIndex], structure.getGroupElementNames(currgroup)[kk], structure.getGroupAtomCharges(currgroup)[kk]);
}
// inc the atomIndex
atomIndex++;
}
if (addThisChain) {
for (int l = 0; l < structure.getGroupBondOrders(currgroup).length; l++) {
// System.out.println(structure.getGroupBondOrders(currgroup).length + " " + l);
int bondIndOne = structure.getGroupBondIndices(currgroup)[l * 2];
int bondIndTwo = structure.getGroupBondIndices(currgroup)[l * 2 + 1];
int bondOrder = structure.getGroupBondOrders(currgroup)[l];
bioAssembly.setGroupBond(bondIndOne, bondIndTwo, bondOrder);
}
}
// inc the groupIndex
groupIndex++;
}
if (addThisChain) {
// Add inter-group bond info
// for(int l = 0; l < structure.getInterGroupBondOrders().length; l++){
// int bondIndOne = structure.getInterGroupBondIndices()[l*2];
// int bondIndTwo = structure.getInterGroupBondIndices()[l*2+1];
// int bondOrder = structure.getInterGroupBondOrders()[l];
// Integer indexOne = atomMap.get(bondIndOne);
// if (indexOne != null) {
// Integer indexTwo = atomMap.get(bondIndTwo);
// if (indexTwo != null) {
// bioAssembly.setInterGroupBond(indexOne, indexTwo, bondOrder);
// }
// }
}
}
// inc the chainIndex
chainIndex++;
}
// inc the modelIndex
modelIndex++;
}
bioAssembly.finalizeStructure();
resList.add(new Tuple2<String, StructureDataInterface>(structureId, bioAssembly));
}
return resList.iterator();
}
use of javax.vecmath.Point3f in project BuildCraft by BuildCraft.
the class ModelUtil method getPointsForFace.
public static Point3f[] getPointsForFace(EnumFacing face, Tuple3f center, Tuple3f radius) {
Point3f centerOfFace = new Point3f(center);
Point3f faceAdd = new Point3f(face.getFrontOffsetX() * radius.x, face.getFrontOffsetY() * radius.y, face.getFrontOffsetZ() * radius.z);
centerOfFace.add(faceAdd);
Vector3f faceRadius = new Vector3f(radius);
if (face.getAxisDirection() == AxisDirection.POSITIVE) {
faceRadius.sub(faceAdd);
} else {
faceRadius.add(faceAdd);
}
return getPoints(centerOfFace, faceRadius);
}
use of javax.vecmath.Point3f in project BuildCraft by BuildCraft.
the class ModelUtil method getPoints.
public static Point3f[] getPoints(Point3f centerFace, Tuple3f faceRadius) {
Point3f[] array = { new Point3f(centerFace), new Point3f(centerFace), new Point3f(centerFace), new Point3f(centerFace) };
array[0].add(addOrNegate(faceRadius, false, false));
array[1].add(addOrNegate(faceRadius, false, true));
array[2].add(addOrNegate(faceRadius, true, true));
array[3].add(addOrNegate(faceRadius, true, false));
return array;
}
use of javax.vecmath.Point3f in project BuildCraft by BuildCraft.
the class RenderPartCube method render.
/**
* Renders an element, without changing the vertex. However this does ignore the "normal" and "texture" components
* of the vertex.
*/
public void render(BufferBuilder bb) {
Point3f pos = center.positionvf();
double x = pos.x;
double y = pos.y;
double z = pos.z;
double rX = sizeX / 2;
double rY = sizeY / 2;
double rZ = sizeZ / 2;
vertex(bb, center, x - rX, y + rY, z + rZ);
vertex(bb, center, x + rX, y + rY, z + rZ);
vertex(bb, center, x + rX, y + rY, z - rZ);
vertex(bb, center, x - rX, y + rY, z - rZ);
vertex(bb, center, x - rX, y - rY, z - rZ);
vertex(bb, center, x + rX, y - rY, z - rZ);
vertex(bb, center, x + rX, y - rY, z + rZ);
vertex(bb, center, x - rX, y - rY, z + rZ);
vertex(bb, center, x - rX, y - rY, z + rZ);
vertex(bb, center, x - rX, y + rY, z + rZ);
vertex(bb, center, x - rX, y + rY, z - rZ);
vertex(bb, center, x - rX, y - rY, z - rZ);
vertex(bb, center, x + rX, y - rY, z - rZ);
vertex(bb, center, x + rX, y + rY, z - rZ);
vertex(bb, center, x + rX, y + rY, z + rZ);
vertex(bb, center, x + rX, y - rY, z + rZ);
vertex(bb, center, x - rX, y - rY, z - rZ);
vertex(bb, center, x - rX, y + rY, z - rZ);
vertex(bb, center, x + rX, y + rY, z - rZ);
vertex(bb, center, x + rX, y - rY, z - rZ);
vertex(bb, center, x + rX, y - rY, z + rZ);
vertex(bb, center, x + rX, y + rY, z + rZ);
vertex(bb, center, x - rX, y + rY, z + rZ);
vertex(bb, center, x - rX, y - rY, z + rZ);
}
use of javax.vecmath.Point3f in project BuildCraft by BuildCraft.
the class MatrixUtil method multiply.
public static AxisAlignedBB multiply(AxisAlignedBB box, Matrix4f matrix) {
Point3f min = new Point3f(new Point3d(box.minX, box.minY, box.minZ));
Point3f max = new Point3f(new Point3d(box.maxX, box.maxY, box.maxZ));
matrix.transform(min);
matrix.transform(max);
return new AxisAlignedBB(min.x, min.y, min.z, max.x, max.y, max.z);
}
Aggregations