use of org.spongycastle.crypto.signers.ECDSASigner in project aion by aionnetwork.
the class ECKeySecp256k1 method verify.
/**
* <p>
* Verifies the given ECDSA signature against the message bytes using the
* public key bytes.
* </p>
*
* <p>
* When using native ECDSA verification, data must be 32 bytes, and no
* element may be larger than 520 bytes.
* </p>
*
* @param data
* Hash of the data to verify.
* @param signature
* signature.
* @param pub
* The public key bytes to use.
*
* @return -
*/
public boolean verify(byte[] data, ECDSASignature signature, byte[] pub) {
ECDSASigner signer = new ECDSASigner();
ECPublicKeyParameters params = new ECPublicKeyParameters(CURVE.getCurve().decodePoint(pub), CURVE);
signer.init(false, params);
try {
return signer.verifySignature(data, signature.r, signature.s);
} catch (NullPointerException npe) {
// Bouncy Castle contains a bug that can cause NPEs given specially
// crafted signatures.
// Those signatures are inherently invalid/attack sigs so we just
// fail them here rather than crash the thread.
logger.error("Caught NPE inside bouncy castle", npe);
return false;
}
}
use of org.spongycastle.crypto.signers.ECDSASigner in project rskj by rsksmart.
the class BridgeSupportTest method addSignatureFromValidFederator.
/**
* Helper method to test addSignature() with a valid federatorPublicKey parameter and both valid/invalid signatures
* @param privateKeysToSignWith keys used to sign the tx. Federator key when we want to produce a valid signature, a random key when we want to produce an invalid signature
* @param numberOfInputsToSign There is just 1 input. 1 when testing the happy case, other values to test attacks/bugs.
* @param signatureCanonical Signature should be canonical. true when testing the happy case, false to test attacks/bugs.
* @param signTwice Sign again with the same key
* @param expectedResult "InvalidParameters", "PartiallySigned" or "FullySigned"
*/
private void addSignatureFromValidFederator(List<BtcECKey> privateKeysToSignWith, int numberOfInputsToSign, boolean signatureCanonical, boolean signTwice, String expectedResult) throws Exception {
// Federation is the genesis federation ATM
Federation federation = bridgeConstants.getGenesisFederation();
Repository repository = new RepositoryImpl(config);
final Keccak256 keccak256 = PegTestUtils.createHash3();
Repository track = repository.startTracking();
BridgeStorageProvider provider = new BridgeStorageProvider(track, PrecompiledContracts.BRIDGE_ADDR, config.getBlockchainConfig().getCommonConstants().getBridgeConstants());
BtcTransaction prevTx = new BtcTransaction(btcParams);
TransactionOutput prevOut = new TransactionOutput(btcParams, prevTx, Coin.FIFTY_COINS, federation.getAddress());
prevTx.addOutput(prevOut);
BtcTransaction t = new BtcTransaction(btcParams);
TransactionOutput output = new TransactionOutput(btcParams, t, Coin.COIN, new BtcECKey().toAddress(btcParams));
t.addOutput(output);
t.addInput(prevOut).setScriptSig(PegTestUtils.createBaseInputScriptThatSpendsFromTheFederation(federation));
provider.getRskTxsWaitingForSignatures().put(keccak256, t);
provider.save();
track.commit();
track = repository.startTracking();
List<LogInfo> logs = new ArrayList<>();
BridgeEventLogger eventLogger = new BridgeEventLoggerImpl(bridgeConstants, logs);
BridgeSupport bridgeSupport = new BridgeSupport(config, track, eventLogger, contractAddress, (Block) null);
Script inputScript = t.getInputs().get(0).getScriptSig();
List<ScriptChunk> chunks = inputScript.getChunks();
byte[] program = chunks.get(chunks.size() - 1).data;
Script redeemScript = new Script(program);
Sha256Hash sighash = t.hashForSignature(0, redeemScript, BtcTransaction.SigHash.ALL, false);
BtcECKey.ECDSASignature sig = privateKeysToSignWith.get(0).sign(sighash);
if (!signatureCanonical) {
sig = new BtcECKey.ECDSASignature(sig.r, BtcECKey.CURVE.getN().subtract(sig.s));
}
byte[] derEncodedSig = sig.encodeToDER();
List derEncodedSigs = new ArrayList();
for (int i = 0; i < numberOfInputsToSign; i++) {
derEncodedSigs.add(derEncodedSig);
}
bridgeSupport.addSignature(1, findPublicKeySignedBy(federation.getPublicKeys(), privateKeysToSignWith.get(0)), derEncodedSigs, keccak256.getBytes());
if (signTwice) {
// Create another valid signature with the same private key
ECDSASigner signer = new ECDSASigner();
ECPrivateKeyParameters privKey = new ECPrivateKeyParameters(privateKeysToSignWith.get(0).getPrivKey(), BtcECKey.CURVE);
signer.init(true, privKey);
BigInteger[] components = signer.generateSignature(sighash.getBytes());
BtcECKey.ECDSASignature sig2 = new BtcECKey.ECDSASignature(components[0], components[1]).toCanonicalised();
bridgeSupport.addSignature(1, findPublicKeySignedBy(federation.getPublicKeys(), privateKeysToSignWith.get(0)), Lists.newArrayList(sig2.encodeToDER()), keccak256.getBytes());
}
if (privateKeysToSignWith.size() > 1) {
BtcECKey.ECDSASignature sig2 = privateKeysToSignWith.get(1).sign(sighash);
byte[] derEncodedSig2 = sig2.encodeToDER();
List derEncodedSigs2 = new ArrayList();
for (int i = 0; i < numberOfInputsToSign; i++) {
derEncodedSigs2.add(derEncodedSig2);
}
bridgeSupport.addSignature(1, findPublicKeySignedBy(federation.getPublicKeys(), privateKeysToSignWith.get(1)), derEncodedSigs2, keccak256.getBytes());
}
bridgeSupport.save();
track.commit();
provider = new BridgeStorageProvider(repository, PrecompiledContracts.BRIDGE_ADDR, config.getBlockchainConfig().getCommonConstants().getBridgeConstants());
if ("FullySigned".equals(expectedResult)) {
Assert.assertTrue(provider.getRskTxsWaitingForSignatures().isEmpty());
Assert.assertThat(logs, is(not(empty())));
Assert.assertThat(logs, hasSize(3));
LogInfo releaseTxEvent = logs.get(2);
Assert.assertThat(releaseTxEvent.getTopics(), hasSize(1));
Assert.assertThat(releaseTxEvent.getTopics(), hasItem(Bridge.RELEASE_BTC_TOPIC));
BtcTransaction releaseTx = new BtcTransaction(bridgeConstants.getBtcParams(), ((RLPList) RLP.decode2(releaseTxEvent.getData()).get(0)).get(1).getRLPData());
Script retrievedScriptSig = releaseTx.getInput(0).getScriptSig();
Assert.assertEquals(4, retrievedScriptSig.getChunks().size());
Assert.assertEquals(true, retrievedScriptSig.getChunks().get(1).data.length > 0);
Assert.assertEquals(true, retrievedScriptSig.getChunks().get(2).data.length > 0);
} else {
Script retrievedScriptSig = provider.getRskTxsWaitingForSignatures().get(keccak256).getInput(0).getScriptSig();
Assert.assertEquals(4, retrievedScriptSig.getChunks().size());
// for "InvalidParameters"
boolean expectSignatureToBePersisted = false;
if ("PartiallySigned".equals(expectedResult)) {
expectSignatureToBePersisted = true;
}
Assert.assertEquals(expectSignatureToBePersisted, retrievedScriptSig.getChunks().get(1).data.length > 0);
Assert.assertEquals(false, retrievedScriptSig.getChunks().get(2).data.length > 0);
}
}
use of org.spongycastle.crypto.signers.ECDSASigner in project rskj by rsksmart.
the class ECKey method doSign.
/**
* Signs the given hash and returns the R and S components as BigIntegers
* and put them in ECDSASignature
*
* @param input to sign
* @return ECDSASignature signature that contains the R and S components
*/
public ECDSASignature doSign(byte[] input) {
// No decryption of private key required.
if (priv == null) {
throw new MissingPrivateKeyException();
}
ECDSASigner signer = new ECDSASigner(new HMacDSAKCalculator(new SHA256Digest()));
ECPrivateKeyParameters privKey = new ECPrivateKeyParameters(priv, CURVE);
signer.init(true, privKey);
BigInteger[] components = signer.generateSignature(input);
return new ECDSASignature(components[0], components[1]).toCanonicalised();
}
use of org.spongycastle.crypto.signers.ECDSASigner in project java-tron by tronprotocol.
the class ECKey method doSign.
/**
* Signs the given hash and returns the R and S components as BigIntegers and putData them in
* ECDSASignature
*
* @param input to sign
* @return ECDSASignature signature that contains the R and S components
*/
public ECDSASignature doSign(byte[] input) {
if (input.length != 32) {
throw new IllegalArgumentException("Expected 32 byte input to " + "ECDSA signature, not " + input.length);
}
// No decryption of private key required.
if (privKey == null) {
throw new MissingPrivateKeyException();
}
if (privKey instanceof BCECPrivateKey) {
ECDSASigner signer = new ECDSASigner(new HMacDSAKCalculator(new SHA256Digest()));
ECPrivateKeyParameters privKeyParams = new ECPrivateKeyParameters(((BCECPrivateKey) privKey).getD(), CURVE);
signer.init(true, privKeyParams);
BigInteger[] components = signer.generateSignature(input);
return new ECDSASignature(components[0], components[1]).toCanonicalised();
} else {
try {
final Signature ecSig = ECSignatureFactory.getRawInstance(provider);
ecSig.initSign(privKey);
ecSig.update(input);
final byte[] derSignature = ecSig.sign();
return ECDSASignature.decodeFromDER(derSignature).toCanonicalised();
} catch (SignatureException | InvalidKeyException ex) {
throw new RuntimeException("ECKey signing error", ex);
}
}
}
use of org.spongycastle.crypto.signers.ECDSASigner in project AppCoins-ethereumj by AppStoreFoundation.
the class ECKey method verify.
/**
* <p>Verifies the given ECDSA signature against the message bytes using the public key bytes.</p>
*
* <p>When using native ECDSA verification, data must be 32 bytes, and no element may be
* larger than 520 bytes.</p>
*
* @param data Hash of the data to verify.
* @param signature signature.
* @param pub The public key bytes to use.
*
* @return -
*/
public static boolean verify(byte[] data, ECDSASignature signature, byte[] pub) {
ECDSASigner signer = new ECDSASigner();
ECPublicKeyParameters params = new ECPublicKeyParameters(CURVE.getCurve().decodePoint(pub), CURVE);
signer.init(false, params);
try {
return signer.verifySignature(data, signature.r, signature.s);
} catch (NullPointerException npe) {
// logger.error("Caught NPE inside bouncy castle", npe);
return false;
}
}
Aggregations