use of org.spongycastle.math.ec.ECPoint in project AppCoins-ethereumj by AppStoreFoundation.
the class ECKey method recoverPubBytesFromSignature.
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param messageHash Hash of the data that was signed.
* @return 65-byte encoded public key
*/
@Nullable
public static byte[] recoverPubBytesFromSignature(int recId, ECDSASignature sig, byte[] messageHash) {
check(recId >= 0, "recId must be positive");
check(sig.r.signum() >= 0, "r must be positive");
check(sig.s.signum() >= 0, "s must be positive");
check(messageHash != null, "messageHash must not be null");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
// Curve order.
BigInteger n = CURVE.getN();
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
BigInteger prime = // Bouncy Castle is not consistent about the letter it uses for the prime.
curve.getQ();
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity()) {
return null;
}
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = new BigInteger(1, messageHash);
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
Fp q = (Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return q.getEncoded(/* compressed */
false);
}
use of org.spongycastle.math.ec.ECPoint in project toshi-android-client by toshiapp.
the class ECKey method recoverPubBytesFromSignature.
/**
* <p>Given the components of a signature and a selector value, recover and return the public key
* that generated the signature according to the algorithm in SEC1v2 section 4.1.6.</p>
*
* <p>The recId is an index from 0 to 3 which indicates which of the 4 possible keys is the correct one. Because
* the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the
* signature, or you must be willing to try each recId in turn until you find one that outputs the key you are
* expecting.</p>
*
* <p>If this method returns null it means recovery was not possible and recId should be iterated.</p>
*
* <p>Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the
* output is null OR a key that is not the one you expect, you try again with the next recId.</p>
*
* @param recId Which possible key to recover.
* @param sig the R and S components of the signature, wrapped.
* @param messageHash Hash of the data that was signed.
* @return 65-byte encoded public key
*/
@Nullable
public static byte[] recoverPubBytesFromSignature(int recId, ECDSASignature sig, byte[] messageHash) {
check(recId >= 0, "recId must be positive");
check(sig.r.signum() >= 0, "r must be positive");
check(sig.s.signum() >= 0, "s must be positive");
check(messageHash != null, "messageHash must not be null");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this function)
// 1.1 Let x = r + jn
// Curve order.
BigInteger n = CURVE.getN();
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen = ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
// Bouncy Castle is not consistent about the letter it uses for the prime.
BigInteger prime = curve.getQ();
if (x.compareTo(prime) >= 0) {
// Cannot have point co-ordinates larger than this as everything takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// 1.4. If nR != point at infinity, then do another iteration of Step 1 (callers responsibility).
if (!R.multiply(n).isInfinity())
return null;
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature verification.
BigInteger e = new BigInteger(1, messageHash);
// 1.6. For k from 1 to 2 do the following. (loop is outside this function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group operator).
//
// We can find the additive inverse by subtracting e from zero then taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 = 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return q.getEncoded(/* compressed */
false);
}
use of org.spongycastle.math.ec.ECPoint in project aion by aionnetwork.
the class ECKeySecp256k1 method recoverPubBytesFromSignature.
/**
* <p>
* Given the components of a signature and a selector value, recover and
* return the public key that generated the signature according to the
* algorithm in SEC1v2 section 4.1.6.
* </p>
*
* <p>
* The recId is an index from 0 to 3 which indicates which of the 4 possible
* keys is the correct one. Because the key recovery operation yields
* multiple potential keys, the correct key must either be stored alongside
* the signature, or you must be willing to try each recId in turn until you
* find one that outputs the key you are expecting.
* </p>
*
* <p>
* If this method returns null it means recovery was not possible and recId
* should be iterated.
* </p>
*
* <p>
* Given the above two points, a correct usage of this method is inside a
* for loop from 0 to 3, and if the output is null OR a key that is not the
* one you expect, you try again with the next recId.
* </p>
*
* @param recId
* Which possible key to recover.
* @param sig
* the R and S components of the signature, wrapped.
* @param messageHash
* Hash of the data that was signed.
* @return 65-byte encoded public key
*/
public byte[] recoverPubBytesFromSignature(int recId, ECDSASignature sig, byte[] messageHash) {
check(recId >= 0, "recId must be positive");
check(sig.r.signum() >= 0, "r must be positive");
check(sig.s.signum() >= 0, "s must be positive");
check(messageHash != null, "messageHash must not be null");
// 1.0 For j from 0 to h (h == recId here and the loop is outside this
// function)
// 1.1 Let x = r + jn
// Curve order.
BigInteger n = CURVE.getN();
BigInteger i = BigInteger.valueOf((long) recId / 2);
BigInteger x = sig.r.add(i.multiply(n));
// 1.2. Convert the integer x to an octet string X of length mlen using
// the conversion routine
// specified in Section 2.3.7, where mlen = ⌈(log2 p)/8⌉ or mlen =
// ⌈m/8⌉.
// 1.3. Convert the octet string (16 set binary digits)||X to an
// elliptic curve point R using the
// conversion routine specified in Section 2.3.4. If this conversion
// routine outputs “invalid”, then
// do another iteration of Step 1.
//
// More concisely, what these points mean is to use X as a compressed
// public key.
ECCurve.Fp curve = (ECCurve.Fp) CURVE.getCurve();
// Bouncy Castle is not consistent
BigInteger prime = curve.getQ();
// prime.
if (x.compareTo(prime) >= 0) {
// takes place modulo Q.
return null;
}
// Compressed keys require you to know an extra bit of data about the
// y-coord as there are two possibilities.
// So it's encoded in the recId.
ECPoint R = decompressKey(x, (recId & 1) == 1);
// (callers responsibility).
if (!R.multiply(n).isInfinity()) {
return null;
}
// 1.5. Compute e from M using Steps 2 and 3 of ECDSA signature
// verification.
BigInteger e = new BigInteger(1, messageHash);
// 1.6. For k from 1 to 2 do the following. (loop is outside this
// function via iterating recId)
// 1.6.1. Compute a candidate public key as:
// Q = mi(r) * (sR - eG)
//
// Where mi(x) is the modular multiplicative inverse. We transform this
// into the following:
// Q = (mi(r) * s ** R) + (mi(r) * -e ** G)
// Where -e is the modular additive inverse of e, that is z such that z
// + e = 0 (mod n). In the above equation
// ** is point multiplication and + is point addition (the EC group
// operator).
//
// We can find the additive inverse by subtracting e from zero then
// taking the mod. For example the additive
// inverse of 3 modulo 11 is 8 because 3 + 8 mod 11 = 0, and -3 mod 11 =
// 8.
BigInteger eInv = BigInteger.ZERO.subtract(e).mod(n);
BigInteger rInv = sig.r.modInverse(n);
BigInteger srInv = rInv.multiply(sig.s).mod(n);
BigInteger eInvrInv = rInv.multiply(eInv).mod(n);
ECPoint.Fp q = (ECPoint.Fp) ECAlgorithms.sumOfTwoMultiplies(CURVE.getG(), eInvrInv, R, srInv);
return q.getEncoded(/* compressed */
false);
}
use of org.spongycastle.math.ec.ECPoint in project SmartMesh_Android by SmartMeshFoundation.
the class Sign2 method publicKeyFromPrivate.
/**
* Returns public key from the given private key.
*
* @param privKey the private key to derive the public key from
* @return BigInteger encoded public key
*/
public static BigInteger publicKeyFromPrivate(BigInteger privKey) {
ECPoint point = publicPointFromPrivate(privKey);
byte[] encoded = point.getEncoded(false);
// remove prefix
return new BigInteger(1, Arrays.copyOfRange(encoded, 1, encoded.length));
}
use of org.spongycastle.math.ec.ECPoint in project rskj by rsksmart.
the class ECIESCoder method encrypt.
public static byte[] encrypt(ECPoint toPub, byte[] plaintext, byte[] macData) {
ECKeyPairGenerator eGen = new ECKeyPairGenerator();
SecureRandom random = new SecureRandom();
KeyGenerationParameters gParam = new ECKeyGenerationParameters(CURVE, random);
eGen.init(gParam);
byte[] iv = new byte[KEY_SIZE / 8];
new SecureRandom().nextBytes(iv);
AsymmetricCipherKeyPair ephemPair = eGen.generateKeyPair();
BigInteger prv = ((ECPrivateKeyParameters) ephemPair.getPrivate()).getD();
ECPoint pub = ((ECPublicKeyParameters) ephemPair.getPublic()).getQ();
EthereumIESEngine iesEngine = makeIESEngine(true, toPub, prv, iv);
ECKeyGenerationParameters keygenParams = new ECKeyGenerationParameters(CURVE, random);
ECKeyPairGenerator generator = new ECKeyPairGenerator();
generator.init(keygenParams);
ECKeyPairGenerator gen = new ECKeyPairGenerator();
gen.init(new ECKeyGenerationParameters(ECKey.CURVE, random));
byte[] cipher;
try {
cipher = iesEngine.processBlock(plaintext, 0, plaintext.length, macData);
ByteArrayOutputStream bos = new ByteArrayOutputStream();
bos.write(pub.getEncoded(false));
bos.write(iv);
bos.write(cipher);
return bos.toByteArray();
} catch (InvalidCipherTextException e) {
throw Throwables.propagate(e);
} catch (IOException e) {
throw Throwables.propagate(e);
}
}
Aggregations