use of org.vmmagic.unboxed.Address in project JikesRVM by JikesRVM.
the class JNIFunctions method GetStringUTFChars.
/**
* GetStringUTFChars: return address of buffer containing contents of a String
* @param env A JREF index for the JNI environment object
* @param strJREF a JREF index for the String object
* @param isCopyAddress address of isCopy jboolean (an int)
* @return address of a copy of the String unicode characters
* and *isCopy is set to 1 (TRUE)
* @throws OutOfMemoryError if the system runs out of memory
*/
private static Address GetStringUTFChars(JNIEnvironment env, int strJREF, Address isCopyAddress) {
if (traceJNI)
VM.sysWriteln("JNI called: GetStringUTFChars");
RuntimeEntrypoints.checkJNICountDownToGC();
String str = (String) env.getJNIRef(strJREF);
if (str == null) {
return Address.zero();
}
// Get length of C string
// for terminating zero
int len = UTF8Convert.utfLength(str) + 1;
// alloc non moving buffer in C heap for string
Address copyBuffer = sysCall.sysMalloc(len);
if (copyBuffer.isZero()) {
env.recordException(new OutOfMemoryError());
return Address.zero();
}
try {
JNIGenericHelpers.createUTFForCFromString(str, copyBuffer, len);
JNIGenericHelpers.setBoolStar(isCopyAddress, true);
return copyBuffer;
} catch (Throwable unexpected) {
if (traceJNI)
unexpected.printStackTrace(System.err);
env.recordException(unexpected);
return Address.zero();
}
}
use of org.vmmagic.unboxed.Address in project JikesRVM by JikesRVM.
the class JNIGenericHelpers method packageParametersFromJValuePtr.
/**
* Repackage the arguments passed as an array of jvalue into an array of Object,
* used by the JNI functions CallStatic<type>MethodA
* @param targetMethod the target {@link MethodReference}
* @param argAddress an address into the C space for the array of jvalue unions
* @return an Object array holding the arguments wrapped at Objects
*/
protected static Object[] packageParametersFromJValuePtr(MethodReference targetMethod, Address argAddress) {
TypeReference[] argTypes = targetMethod.getParameterTypes();
int argCount = argTypes.length;
Object[] argObjectArray = new Object[argCount];
// get the JNIEnvironment for this thread in case we need to dereference any object arg
JNIEnvironment env = RVMThread.getCurrentThread().getJNIEnv();
Address addr = argAddress;
for (int i = 0; i < argCount; i++, addr = addr.plus(BYTES_IN_LONG)) {
// convert and wrap the argument according to the expected type
if (argTypes[i].isReferenceType()) {
// Avoid endianness issues by loading the whole slot
Word wholeSlot = addr.loadWord();
// for object, the arg is a JREF index, dereference to get the real object
int JREFindex = wholeSlot.toInt();
argObjectArray[i] = env.getJNIRef(JREFindex);
} else if (argTypes[i].isIntType()) {
argObjectArray[i] = addr.loadInt();
} else if (argTypes[i].isLongType()) {
argObjectArray[i] = addr.loadLong();
} else if (argTypes[i].isBooleanType()) {
// the 0/1 bit is stored in the high byte
argObjectArray[i] = addr.loadByte() != 0;
} else if (argTypes[i].isByteType()) {
// the target byte is stored in the high byte
argObjectArray[i] = addr.loadByte();
} else if (argTypes[i].isCharType()) {
// char is stored in the high 2 bytes
argObjectArray[i] = addr.loadChar();
} else if (argTypes[i].isShortType()) {
// short is stored in the high 2 bytes
argObjectArray[i] = addr.loadShort();
} else if (argTypes[i].isFloatType()) {
argObjectArray[i] = addr.loadFloat();
} else {
if (VM.VerifyAssertions)
VM._assert(argTypes[i].isDoubleType());
argObjectArray[i] = addr.loadDouble();
}
}
return argObjectArray;
}
use of org.vmmagic.unboxed.Address in project JikesRVM by JikesRVM.
the class JNICompiler method compile.
/**
* Compiles a method to handle the Java to C transition and back
* Transitioning from Java to C then back:
* <ol>
* <li>Set up stack frame and save non-volatile registers<li>
* <li>Set up jniEnv - set up a register to hold JNIEnv and store
* the Processor in the JNIEnv for easy access</li>
* <li>Move all native method arguments on to stack (NB at this point all
* non-volatile state is saved)</li>
* <li>Record the frame pointer of the last Java frame (this) in the jniEnv</li>
* <li>Call out to convert reference arguments to IDs</li>
* <li>Set processor as being "in native"</li>
* <li>Set up stack frame and registers for transition to C</li>
* <li>Call out to C</li>
* <li>Save result to stack</li>
* <li>Transition back from "in native" to "in Java", take care that the
* Processor isn't "blocked in native", ie other processors have decided to
* start a GC and we're not permitted to execute Java code whilst this
* occurs</li>
* <li>Convert a reference result (currently a JNI ref) into a true reference</li>
* <li>Release JNI refs</li>
* <li>Restore stack and place result in register</li>
* </ol>
*
* @param method the method to compile
* @return the compiled method (always a {@link JNICompiledMethod})
*/
public static synchronized CompiledMethod compile(NativeMethod method) {
// Meaning of constant offset into frame (assuming 4byte word size):
// Stack frame:
// on entry after prolog
//
// high address high address
// | | | | Caller frame
// | | | |
// + |arg 0 | |arg 0 | <- firstParameterOffset
// + |arg 1 | |arg 1 |
// + |... | |... |
// +8 |arg n-1 | |arg n-1 | <- lastParameterOffset
// +4 |returnAddr| |returnAddr|
// 0 + + +saved FP + <- EBP/FP value in glue frame
// -4 | | |methodID |
// -8 | | |saved EDI |
// -C | | |saved EBX |
// -10 | | |saved EBP |
// -14 | | |saved ENV | (JNIEnvironment)
// -18 | | |arg n-1 | reordered args to native method
// -1C | | | ... | ...
// -20 | | |arg 1 | ...
// -24 | | |arg 0 | ...
// -28 | | |class/obj | required second arg to native method
// -2C | | |jni funcs | required first arg to native method
// -30 | | | |
// | | | |
// | | | |
// low address low address
// Register values:
// EBP - after step 1 EBP holds a frame pointer allowing easy
// access to both this and the proceeding frame
// ESP - gradually floats down as the stack frame is initialized
// S0/ECX - reference to the JNI environment after step 3
JNICompiledMethod cm = (JNICompiledMethod) CompiledMethods.createCompiledMethod(method, CompiledMethod.JNI);
// some size for the instruction array
Assembler asm = new Assembler(100);
Address nativeIP = method.getNativeIP();
final Offset lastParameterOffset = Offset.fromIntSignExtend(2 * WORDSIZE);
// final Offset firstParameterOffset = Offset.fromIntSignExtend(WORDSIZE+(method.getParameterWords() << LG_WORDSIZE));
final TypeReference[] args = method.getParameterTypes();
// (1) Set up stack frame and save non-volatile registers
// TODO: check and resize stack once on the lowest Java to C transition
// on the stack. Not needed if we use the thread original stack
// set 2nd word of header = return address already pushed by CALL
asm.emitPUSH_RegDisp(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset());
// establish new frame
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), SP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), SP);
}
// set first word of header: method ID
if (VM.VerifyAssertions)
VM._assert(STACKFRAME_METHOD_ID_OFFSET.toInt() == -WORDSIZE);
asm.emitPUSH_Imm(cm.getId());
// save nonvolatile registrs: EDI, EBX, EBP
if (VM.VerifyAssertions)
VM._assert(EDI_SAVE_OFFSET.toInt() == -2 * WORDSIZE);
// save nonvolatile EDI register
asm.emitPUSH_Reg(EDI);
if (VM.VerifyAssertions)
VM._assert(EBX_SAVE_OFFSET.toInt() == -3 * WORDSIZE);
// save nonvolatile EBX register
asm.emitPUSH_Reg(EBX);
if (VM.VerifyAssertions)
VM._assert(EBP_SAVE_OFFSET.toInt() == -4 * WORDSIZE);
// save nonvolatile EBP register
asm.emitPUSH_Reg(EBP);
// Establish EBP as the framepointer for use in the rest of the glue frame
if (VM.BuildFor32Addr) {
asm.emitLEA_Reg_RegDisp(EBP, SP, Offset.fromIntSignExtend(4 * WORDSIZE));
} else {
asm.emitLEA_Reg_RegDisp_Quad(EBP, SP, Offset.fromIntSignExtend(4 * WORDSIZE));
}
// S0 = RVMThread.jniEnv
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
} else {
asm.emitMOV_Reg_RegDisp_Quad(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
}
if (VM.VerifyAssertions)
VM._assert(JNI_ENV_OFFSET.toInt() == -5 * WORDSIZE);
// save JNI Env for after call
asm.emitPUSH_Reg(S0);
if (VM.VerifyAssertions)
VM._assert(BP_ON_ENTRY_OFFSET.toInt() == -6 * WORDSIZE);
asm.emitPUSH_RegDisp(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset());
// save BP into JNIEnv
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBP);
}
// (3) Move all native method arguments on to stack (NB at this
// point all non-volatile state is saved)
// (3.1) Count how many arguments could be passed in either FPRs or GPRs
int numFprArgs = 0;
int numGprArgs = 0;
for (TypeReference arg : args) {
if (arg.isFloatingPointType()) {
numFprArgs++;
} else if (VM.BuildFor32Addr && arg.isLongType()) {
numGprArgs += 2;
} else {
numGprArgs++;
}
}
// (3.2) add stack aligning padding
if (VM.BuildFor64Addr) {
int argsInRegisters = Math.min(numFprArgs, NATIVE_PARAMETER_FPRS.length) + Math.min(numGprArgs + 2, NATIVE_PARAMETER_GPRS.length);
int argsOnStack = numGprArgs + numFprArgs + 2 - argsInRegisters;
if (VM.VerifyAssertions)
VM._assert(argsOnStack >= 0);
if ((argsOnStack & 1) != 0) {
// need odd alignment prior to pushes
asm.emitAND_Reg_Imm_Quad(SP, -16);
asm.emitPUSH_Reg(T0);
} else {
// need even alignment prior to pushes
asm.emitAND_Reg_Imm_Quad(SP, -16);
}
}
// (we always pass a this or a class but we only pop this)
if (!method.isStatic()) {
numGprArgs++;
}
// (3.3) Walk over arguments backwards pushing either from memory or registers
Offset currentArg = lastParameterOffset;
int argFpr = numFprArgs - 1;
int argGpr = numGprArgs - 1;
for (int i = args.length - 1; i >= 0; i--) {
TypeReference arg = args[i];
if (arg.isFloatType()) {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSS_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argFpr--;
} else if (arg.isDoubleType()) {
if (VM.BuildFor32Addr) {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
// need 2 slots with 32bit addresses
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSD_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg.plus(WORDSIZE));
// need 2 slots with 32bit addresses
asm.emitPUSH_RegDisp(EBP, currentArg);
}
} else {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSD_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
}
argFpr--;
currentArg = currentArg.plus(WORDSIZE);
} else if (VM.BuildFor32Addr && arg.isLongType()) {
if (argGpr < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr - 1]);
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr]);
} else if (argGpr - 1 < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr - 1]);
asm.emitPUSH_RegDisp(EBP, currentArg);
} else {
asm.emitPUSH_RegDisp(EBP, currentArg.plus(WORDSIZE));
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argGpr -= 2;
currentArg = currentArg.plus(WORDSIZE);
} else {
if (argGpr < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr]);
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argGpr--;
if (VM.BuildFor64Addr && arg.isLongType()) {
currentArg = currentArg.plus(WORDSIZE);
}
}
currentArg = currentArg.plus(WORDSIZE);
}
// (3.4) push class or object argument
if (method.isStatic()) {
// push java.lang.Class object for klass
Offset klassOffset = Offset.fromIntSignExtend(Statics.findOrCreateObjectLiteral(method.getDeclaringClass().getClassForType()));
asm.generateJTOCpush(klassOffset);
} else {
if (VM.VerifyAssertions)
VM._assert(argGpr == 0);
asm.emitPUSH_Reg(PARAMETER_GPRS[0]);
}
// (3.5) push a pointer to the JNI functions that will be
// dereferenced in native code
asm.emitPUSH_Reg(S0);
if (jniExternalFunctionsFieldOffset != 0) {
if (VM.BuildFor32Addr) {
asm.emitADD_RegInd_Imm(ESP, jniExternalFunctionsFieldOffset);
} else {
asm.emitADD_RegInd_Imm_Quad(ESP, jniExternalFunctionsFieldOffset);
}
}
// (4) Call out to convert reference arguments to IDs, set thread as
// being "in native" and record the frame pointer of the last Java frame
// (this) in the jniEnv
// Encode reference arguments into a long
int encodedReferenceOffsets = 0;
for (int i = 0, pos = 0; i < args.length; i++, pos++) {
TypeReference arg = args[i];
if (arg.isReferenceType()) {
if (VM.VerifyAssertions)
VM._assert(pos < 32);
encodedReferenceOffsets |= 1 << pos;
} else if (VM.BuildFor32Addr && (arg.isLongType() || arg.isDoubleType())) {
pos++;
}
}
// Call out to JNI environment JNI entry
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(PARAMETER_GPRS[0], EBP, JNI_ENV_OFFSET);
} else {
asm.emitMOV_Reg_RegDisp_Quad(PARAMETER_GPRS[0], EBP, JNI_ENV_OFFSET);
}
asm.emitPUSH_Reg(PARAMETER_GPRS[0]);
asm.emitMOV_Reg_Imm(PARAMETER_GPRS[1], encodedReferenceOffsets);
asm.emitPUSH_Reg(PARAMETER_GPRS[1]);
asm.baselineEmitLoadTIB(S0, PARAMETER_GPRS[0]);
asm.emitCALL_RegDisp(S0, Entrypoints.jniEntry.getOffset());
// (5) Set up stack frame and registers for transition to C
int stackholes = 0;
int position = 0;
int argsPassedInRegister = 0;
if (VM.BuildFor64Addr) {
int gpRegistersInUse = 2;
int fpRegistersInUse = 0;
boolean dataOnStack = false;
// JNI env
asm.emitPOP_Reg(NATIVE_PARAMETER_GPRS[0]);
// Object/Class
asm.emitPOP_Reg(NATIVE_PARAMETER_GPRS[1]);
argsPassedInRegister += 2;
for (TypeReference arg : method.getParameterTypes()) {
if (arg.isFloatType()) {
if (fpRegistersInUse < NATIVE_PARAMETER_FPRS.length) {
asm.emitMOVSS_Reg_RegDisp((XMM) NATIVE_PARAMETER_FPRS[fpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
fpRegistersInUse++;
argsPassedInRegister++;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
} else if (arg.isDoubleType()) {
if (fpRegistersInUse < NATIVE_PARAMETER_FPRS.length) {
asm.emitMOVSD_Reg_RegDisp((XMM) NATIVE_PARAMETER_FPRS[fpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
if (VM.BuildFor32Addr)
asm.emitPOP_Reg(T0);
fpRegistersInUse++;
argsPassedInRegister += VM.BuildFor32Addr ? 2 : 1;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
} else {
if (gpRegistersInUse < NATIVE_PARAMETER_GPRS.length) {
// TODO: we can't have holes in the data that is on the stack, we need to shuffle it up
asm.emitMOV_Reg_RegDisp_Quad(NATIVE_PARAMETER_GPRS[gpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
gpRegistersInUse++;
argsPassedInRegister++;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
}
if (dataOnStack) {
position++;
}
}
position--;
int onStackOffset = position;
int mask = 0;
for (int i = position; i >= 0; i--) {
mask = 1 << i;
if ((stackholes & mask) != 0) {
continue;
}
if (i < onStackOffset) {
asm.emitMOV_Reg_RegDisp_Quad(T0, SP, Offset.fromIntZeroExtend(i << LOG_BYTES_IN_WORD));
asm.emitMOV_RegDisp_Reg_Quad(SP, Offset.fromIntZeroExtend(onStackOffset << LOG_BYTES_IN_WORD), T0);
}
onStackOffset--;
}
while (onStackOffset >= 0) {
asm.emitPOP_Reg(T0);
onStackOffset--;
}
}
// move address of native code to invoke into T0
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_Imm(T0, nativeIP.toInt());
} else {
asm.emitMOV_Reg_Imm_Quad(T0, nativeIP.toLong());
}
// Trap if stack alignment fails
if (VM.ExtremeAssertions && VM.BuildFor64Addr) {
asm.emitBT_Reg_Imm(ESP, 3);
ForwardReference fr = asm.forwardJcc(LGE);
asm.emitINT_Imm(3);
fr.resolve(asm);
}
// make the call to native code
asm.emitCALL_Reg(T0);
// (7) Discard parameters on stack
if (VM.BuildFor32Addr) {
// throw away args, class/this ptr and env
int argsToThrowAway = method.getParameterWords() + 2 - argsPassedInRegister;
if (argsToThrowAway != 0) {
asm.emitLEA_Reg_RegDisp(SP, EBP, BP_ON_ENTRY_OFFSET);
}
} else {
// throw away args, class/this ptr and env (and padding)
asm.emitLEA_Reg_RegDisp_Quad(SP, EBP, BP_ON_ENTRY_OFFSET);
}
// (8) Save result to stack
final TypeReference returnType = method.getReturnType();
if (returnType.isVoidType()) {
// Nothing to save
} else if (returnType.isFloatType()) {
// adjust stack
asm.emitPUSH_Reg(T0);
if (VM.BuildFor32Addr) {
asm.emitFSTP_RegInd_Reg(ESP, FP0);
} else {
asm.emitMOVSS_RegInd_Reg(ESP, XMM0);
}
} else if (returnType.isDoubleType()) {
// adjust stack
asm.emitPUSH_Reg(T0);
// adjust stack
asm.emitPUSH_Reg(T0);
if (VM.BuildFor32Addr) {
asm.emitFSTP_RegInd_Reg_Quad(ESP, FP0);
} else {
asm.emitMOVSD_RegInd_Reg(ESP, XMM0);
}
} else if (VM.BuildFor32Addr && returnType.isLongType()) {
asm.emitPUSH_Reg(T0);
asm.emitPUSH_Reg(T1);
} else {
// Ensure sign-extension is correct
if (returnType.isBooleanType()) {
asm.emitMOVZX_Reg_Reg_Byte(T0, T0);
} else if (returnType.isByteType()) {
asm.emitMOVSX_Reg_Reg_Byte(T0, T0);
} else if (returnType.isCharType()) {
asm.emitMOVZX_Reg_Reg_Word(T0, T0);
} else if (returnType.isShortType()) {
asm.emitMOVSX_Reg_Reg_Word(T0, T0);
}
asm.emitPUSH_Reg(T0);
}
// (9.1) reload JNIEnvironment from glue frame
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(S0, EBP, JNICompiler.JNI_ENV_OFFSET);
} else {
asm.emitMOV_Reg_RegDisp_Quad(S0, EBP, JNICompiler.JNI_ENV_OFFSET);
}
// (9.2) Reload thread register from JNIEnvironment
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
} else {
asm.emitMOV_Reg_RegDisp_Quad(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
}
// (9.3) Establish frame pointer to this glue method
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), EBP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), EBP);
}
// result (currently a JNI ref) into a true reference, release JNI refs
if (VM.BuildFor32Addr) {
// 1st arg is JNI Env
asm.emitMOV_Reg_Reg(PARAMETER_GPRS[0], S0);
} else {
// 1st arg is JNI Env
asm.emitMOV_Reg_Reg_Quad(PARAMETER_GPRS[0], S0);
}
if (returnType.isReferenceType()) {
// 2nd arg is ref result
asm.emitPOP_Reg(PARAMETER_GPRS[1]);
} else {
// place dummy (null) operand on stack
asm.emitXOR_Reg_Reg(PARAMETER_GPRS[1], PARAMETER_GPRS[1]);
}
// save JNIEnv
asm.emitPUSH_Reg(S0);
// push arg 1
asm.emitPUSH_Reg(S0);
// push arg 2
asm.emitPUSH_Reg(PARAMETER_GPRS[1]);
// Do the call
asm.baselineEmitLoadTIB(S0, S0);
asm.emitCALL_RegDisp(S0, Entrypoints.jniExit.getOffset());
// restore JNIEnv
asm.emitPOP_Reg(S0);
// place result in register
if (returnType.isVoidType()) {
// Nothing to save
} else if (returnType.isReferenceType()) {
// value already in register
} else if (returnType.isFloatType()) {
if (SSE2_FULL) {
asm.emitMOVSS_Reg_RegInd(XMM0, ESP);
} else {
asm.emitFLD_Reg_RegInd(FP0, ESP);
}
// adjust stack
asm.emitPOP_Reg(T0);
} else if (returnType.isDoubleType()) {
if (SSE2_FULL) {
asm.emitMOVSD_Reg_RegInd(XMM0, ESP);
} else {
asm.emitFLD_Reg_RegInd_Quad(FP0, ESP);
}
// adjust stack
asm.emitPOP_Reg(T0);
// adjust stack
asm.emitPOP_Reg(T0);
} else if (VM.BuildFor32Addr && returnType.isLongType()) {
asm.emitPOP_Reg(T0);
asm.emitPOP_Reg(T1);
} else {
asm.emitPOP_Reg(T0);
}
// saved previous native BP
asm.emitPOP_Reg(EBX);
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBX);
} else {
asm.emitMOV_RegDisp_Reg_Quad(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBX);
}
// throw away JNI env
asm.emitPOP_Reg(EBX);
// restore non-volatile EBP
asm.emitPOP_Reg(EBP);
// restore non-volatile EBX
asm.emitPOP_Reg(EBX);
// restore non-volatile EDI
asm.emitPOP_Reg(EDI);
// throw away cmid
asm.emitPOP_Reg(S0);
asm.emitPOP_RegDisp(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset());
// pop parameters from stack (Note that parameterWords does not include "this")
if (method.isStatic()) {
asm.emitRET_Imm(method.getParameterWords() << LG_WORDSIZE);
} else {
asm.emitRET_Imm((method.getParameterWords() + 1) << LG_WORDSIZE);
}
CodeArray code = asm.getMachineCodes();
cm.compileComplete(code);
return cm;
}
use of org.vmmagic.unboxed.Address in project JikesRVM by JikesRVM.
the class MemoryManager method allocateArrayInternal.
/**
* Allocate an array object.
*
* @param numElements The number of element bytes
* @param size size in bytes of array header
* @param tib type information block for array object
* @param allocator int that encodes which allocator should be used
* @param align the alignment requested; must be a power of 2.
* @param offset the offset at which the alignment is desired.
* @param site allocation site.
* @return array object with header installed and all elements set
* to zero/{@code null}
* See also: bytecode 0xbc ("newarray") and 0xbd ("anewarray")
*/
@Inline
private static Object allocateArrayInternal(int numElements, int size, TIB tib, int allocator, int align, int offset, int site) {
Selected.Mutator mutator = Selected.Mutator.get();
allocator = mutator.checkAllocator(org.jikesrvm.runtime.Memory.alignUp(size, MIN_ALIGNMENT), align, allocator);
Address region = allocateSpace(mutator, size, align, offset, allocator, site);
Object result = ObjectModel.initializeArray(region, tib, numElements, size);
mutator.postAlloc(ObjectReference.fromObject(result), ObjectReference.fromObject(tib), size, allocator);
return result;
}
use of org.vmmagic.unboxed.Address in project JikesRVM by JikesRVM.
the class JavaHeader method moveObject.
/**
* Copies an object to the given raw storage address.
*
* @param toObj the target object. If this is non-{@code null}, the target
* address must be {@code Address.zero()}.
* @param toAddress the target address. If this is not {@code Address.zero()},
* the target object must be {@code null}.
* @param fromObj the object to copy from
* @param numBytes the number of bytes to copy
* @return the reference of the object's copy
*/
@Inline
public static Object moveObject(Address toAddress, Object fromObj, Object toObj, int numBytes) {
if (VM.VerifyAssertions)
VM._assert(toAddress.isZero() || toObj == null);
// Default values
int copyBytes = numBytes;
int objRefOffset = OBJECT_REF_OFFSET;
Word statusWord = Word.zero();
Word hashState = HASH_STATE_UNHASHED;
if (ADDRESS_BASED_HASHING) {
// Read the hash state (used below)
statusWord = Magic.getWordAtOffset(fromObj, STATUS_OFFSET);
hashState = statusWord.and(HASH_STATE_MASK);
if (hashState.EQ(HASH_STATE_HASHED)) {
// We do not copy the hashcode, but we do allocate it
copyBytes -= HASHCODE_BYTES;
if (!DYNAMIC_HASH_OFFSET) {
// The hashcode is the first word, so we copy to object one word higher
if (toObj == null) {
toAddress = toAddress.plus(HASHCODE_BYTES);
}
}
} else if (!DYNAMIC_HASH_OFFSET && hashState.EQ(HASH_STATE_HASHED_AND_MOVED)) {
// Simple operation (no hash state change), but one word larger header
objRefOffset += HASHCODE_BYTES;
}
}
if (toObj != null) {
toAddress = Magic.objectAsAddress(toObj).minus(objRefOffset);
}
// Low memory word of source object
Address fromAddress = Magic.objectAsAddress(fromObj).minus(objRefOffset);
// Do the copy
Memory.aligned32Copy(toAddress, fromAddress, copyBytes);
if (toObj == null) {
toObj = Magic.addressAsObject(toAddress.plus(objRefOffset));
} else {
if (VM.VerifyAssertions)
VM._assert(toObj == Magic.addressAsObject(toAddress.plus(objRefOffset)));
}
// Do we need to copy the hash code?
if (hashState.EQ(HASH_STATE_HASHED)) {
int hashCode = Magic.objectAsAddress(fromObj).toWord().rshl(LOG_BYTES_IN_ADDRESS).toInt();
if (DYNAMIC_HASH_OFFSET) {
Magic.setIntAtOffset(toObj, Offset.fromIntSignExtend(numBytes - OBJECT_REF_OFFSET - HASHCODE_BYTES), hashCode);
} else {
Magic.setIntAtOffset(toObj, HASHCODE_OFFSET, (hashCode << 1) | ALIGNMENT_MASK);
}
Magic.setWordAtOffset(toObj, STATUS_OFFSET, statusWord.or(HASH_STATE_HASHED_AND_MOVED));
if (ObjectModel.HASH_STATS)
ObjectModel.hashTransition2++;
}
return toObj;
}
Aggregations