use of org.jikesrvm.jni.JNICompiledMethod in project JikesRVM by JikesRVM.
the class JNICompiler method compile.
/**
* This method creates the stub to link native method. It will be called
* from the lazy linker the first time a native method is invoked. The stub
* generated will be patched by the lazy linker to link to the native method
* for all future calls. <p>
* <pre>
* The stub performs the following tasks in the prologue:
* <ol>
* <li>Allocate the glue frame
* <li>Save the TR and JTOC registers in the JNI Environment for reentering Java later
* <li>Shuffle the parameters in the registers to conform to the OS calling convention
* <li>Save the nonvolatile registers in a known space in the frame to be used
* for the GC stack map
* <li>Push a new JREF frame on the JNIRefs stack
* <li>Supply the first JNI argument: the JNI environment pointer
* <li>Supply the second JNI argument: class object if static, "this" if virtual
* </ol>
* <p>
* The stub performs the following tasks in the epilogue:
* <ol>
* <li>Restore TR and JTOC registers saved in JNI Environment
* <li>Restore the nonvolatile registers if GC has occurred
* <li>Pop the JREF frame off the JNIRefs stack
* <li>Check for pending exception and deliver to Java caller if present
* <li>Process the return value from native: push onto caller's Java stack
* </ol>
* <p>
* Within the stackframe, we have two frames.
* The "main" frame exactly follows the OS native ABI and is therefore
* different for each ABI.
* The "mini-frame" is identical on all platforms and is stores RVM-specific fields.
* The picture below shows the frames for 64-bit PowerPC ELF ABI.
* <pre>
*
* | fp | <- native frame
* | cr |
* | lr |
* | resv |
* | resv |
* + toc +
* | |
* | |
* |----------| <- Java to C glue frame using native calling conventions
* | fp | saved fp of mini-frame
* | cr |
* | lr | native caller saves return address of native method here
* | resv |
* | resv |
* + toc +
* | 0 | spill area (at least 8 words reserved)
* | 1 | (also used for saving volatile regs during calls in prolog)
* | 2 |
* | 3 |
* | 4 |
* | 5 |
* | 6 |
* | 7 |
* | ... |
* |----------| <- mini-frame for use by RVM stackwalkers
* | fp | saved fp of Java caller <- JNI_SAVE_AREA_OFFSET
* | mid | cmid of native method
* | xxx (lr) | lr slot not used in mini frame
* |GC flag | did GC happen while thread in native? <- JNI_GC_FLAG_OFFSET
* |ENV | JNIEnvironment <- JNI_ENV_OFFSET
* |RVM nonvol| save RVM nonvolatile GPRs for updating by GC stack mapper
* | ... |
* |RVM nonvol| <- JNI_RVM_NONVOLATILE_OFFSET
* |----------|
* | fp | <- Java caller frame
* | mid |
* | xxx |
* | |
* | |
* | |
* |----------|
* | |
* </pre>
* <p>
* Runtime.unwindNativeStackFrame will return a pointer to the mini-frame
* because none of our stack walkers need to do anything with the main frame.
*/
public static synchronized CompiledMethod compile(NativeMethod method) {
JNICompiledMethod cm = (JNICompiledMethod) CompiledMethods.createCompiledMethod(method, CompiledMethod.JNI);
int compiledMethodId = cm.getId();
Assembler asm = new Assembler(0);
int frameSize = getFrameSize(method);
RVMClass klass = method.getDeclaringClass();
// need 4 gp temps
if (VM.VerifyAssertions)
VM._assert(T3.value() <= LAST_VOLATILE_GPR.value());
// need 4 fp temps
if (VM.VerifyAssertions)
VM._assert(F3.value() <= LAST_VOLATILE_FPR.value());
if (VM.VerifyAssertions)
VM._assert(S0.value() < S1.value() && // need 2 scratch
S1.value() <= LAST_SCRATCH_GPR.value());
Address nativeIP = method.getNativeIP();
Address nativeTOC = method.getNativeTOC();
// NOTE: this must be done before the condition Thread.hasNativeStackFrame() become true
// so that the first Java to C transition will be allowed to resize the stack
// (currently, this is true when the JNIRefsTop index has been incremented from 0)
// add at least 14 for C frame (header + spill)
asm.emitNativeStackOverflowCheck(frameSize + 14);
// save return address in caller frame
asm.emitMFLR(REGISTER_ZERO);
asm.emitSTAddr(REGISTER_ZERO, STACKFRAME_RETURN_ADDRESS_OFFSET.toInt(), FP);
// buy mini frame
asm.emitSTAddrU(FP, -JNI_SAVE_AREA_SIZE, FP);
// store CMID for native method in mini-frame
asm.emitLVAL(S0, compiledMethodId);
asm.emitSTW(S0, STACKFRAME_METHOD_ID_OFFSET.toInt(), FP);
// buy main frame, the total size equals to frameSize
asm.emitSTAddrU(FP, -frameSize + JNI_SAVE_AREA_SIZE, FP);
// establish S0 -> threads JNIEnv structure
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
// save the TR register in the JNIEnvironment object for possible calls back into Java
asm.emitSTAddrOffset(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
// save the JNIEnvironment in the stack frame so we can use it to acquire the TR
// when we return from native code.
// save TR in frame
asm.emitSTAddr(S0, frameSize - JNI_ENV_OFFSET, FP);
// save mini-frame frame pointer in JNIEnv, JNITopJavaFP, which will be the frame
// to start scanning this stack during GC, if top of stack is still executing in C
asm.emitLAddr(THREAD_REGISTER, 0, FP);
asm.emitSTAddrOffset(THREAD_REGISTER, S0, Entrypoints.JNITopJavaFPField.getOffset());
// save the RVM nonvolatile GPRs, to be scanned by GC stack mapper
for (int i = LAST_NONVOLATILE_GPR.value(), offset = JNI_RVM_NONVOLATILE_OFFSET; i >= FIRST_NONVOLATILE_GPR.value(); --i, offset += BYTES_IN_STACKSLOT) {
asm.emitSTAddr(GPR.lookup(i), frameSize - offset, FP);
}
// clear the GC flag on entry to native code
// use TR as scratch
asm.emitLVAL(THREAD_REGISTER, 0);
asm.emitSTW(THREAD_REGISTER, frameSize - JNI_GC_FLAG_OFFSET, FP);
// generate the code to map the parameters to OS convention and add the
// second parameter (either the "this" ptr or class if a static method).
// The JNI Function ptr first parameter is set before making the call
// by the out of line machine code we invoke below.
// Opens a new frame in the JNIRefs table to register the references.
// Assumes S0 set to JNIEnv, kills KLUDGE_TI_REG, S1 & THREAD_REGISTER
// On return, S0 still contains JNIEnv
storeParameters(asm, frameSize, method, klass);
//
// Load required JNI function ptr into first parameter reg (GPR3/T0)
// This pointer is an interior pointer to the JNIEnvironment which is
// currently in S0.
//
asm.emitADDI(T0, Entrypoints.JNIExternalFunctionsField.getOffset(), S0);
//
// change the status of the thread to IN_JNI
//
asm.emitLAddrOffset(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
asm.emitLVALAddr(S1, Entrypoints.execStatusField.getOffset());
// get status for thread
asm.emitLWARX(S0, S1, THREAD_REGISTER);
// we should be in java code?
asm.emitCMPI(S0, RVMThread.IN_JAVA + (RVMThread.ALWAYS_LOCK_ON_STATE_TRANSITION ? 100 : 0));
ForwardReference notInJava = asm.emitForwardBC(NE);
// S0 <- new state value
asm.emitLVAL(S0, RVMThread.IN_JNI);
// attempt to change state to IN_JNI
asm.emitSTWCXr(S0, S1, THREAD_REGISTER);
// branch if success over slow path
ForwardReference enteredJNIRef = asm.emitForwardBC(EQ);
notInJava.resolve(asm);
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.threadContextRegistersField.getOffset());
asm.emitLAddrOffset(S1, JTOC, ArchEntrypoints.saveVolatilesInstructionsField.getOffset());
asm.emitMTLR(S1);
asm.emitBCLRL();
// NOTE: THREAD_REGISTER should still have the thread
// pointer, since up to this point we would have saved it but not
// overwritten it.
// call into our friendly slow path function. note that this should
// work because:
// 1) we're not calling from C so we don't care what registers are
// considered non-volatile in C
// 2) all Java non-volatiles have been saved
// 3) the only other registers we need - TR and S0 are taken care
// of (see above)
// 4) the prologue and epilogue will take care of the frame pointer
// accordingly (it will just save it on the stack and then restore
// it - so we don't even have to know what its value is here)
// the only thing we have to make sure of is that MMTk ignores the
// framePointer field in RVMThread and uses the one in the JNI
// environment instead (see Collection.prepareMutator)...
// T1 gets address of function
asm.emitLAddrOffset(S1, JTOC, Entrypoints.enterJNIBlockedFromCallIntoNativeMethod.getOffset());
asm.emitMTLR(S1);
// call RVMThread.enterJNIBlocked
asm.emitBCLRL();
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.threadContextRegistersField.getOffset());
asm.emitLAddrOffset(S1, JTOC, ArchEntrypoints.restoreVolatilesInstructionsField.getOffset());
asm.emitMTLR(S1);
asm.emitBCLRL();
// come here when we're done
enteredJNIRef.resolve(asm);
// set the TOC and IP for branch to out_of_line code
asm.emitLVALAddr(JTOC, nativeTOC);
asm.emitLVALAddr(S1, nativeIP);
// move native code address to CTR reg;
// do this early so that S1 will be available as a scratch.
asm.emitMTCTR(S1);
//
// CALL NATIVE METHOD
//
asm.emitBCCTRL();
// if we have to call sysVirtualProcessorYield because we are locked in native.
if (VM.BuildFor64Addr) {
asm.emitSTD(T0, NATIVE_FRAME_HEADER_SIZE, FP);
} else {
asm.emitSTW(T0, NATIVE_FRAME_HEADER_SIZE, FP);
asm.emitSTW(T1, NATIVE_FRAME_HEADER_SIZE + BYTES_IN_ADDRESS, FP);
}
//
// try to return thread status to IN_JAVA
//
int label1 = asm.getMachineCodeIndex();
// TODO: we can do this directly from FP because we know framesize at compiletime
// (the same way we stored the JNI Env above)
// get mini-frame
asm.emitLAddr(S0, 0, FP);
// get Java caller FP
asm.emitLAddr(S0, 0, S0);
// load JNIEnvironment into TR
asm.emitLAddr(THREAD_REGISTER, -JNI_ENV_OFFSET, S0);
// Restore JTOC and TR
asm.emitLAddrOffset(JTOC, THREAD_REGISTER, Entrypoints.JNIEnvSavedJTOCField.getOffset());
asm.emitLAddrOffset(THREAD_REGISTER, THREAD_REGISTER, Entrypoints.JNIEnvSavedTRField.getOffset());
asm.emitLVALAddr(S1, Entrypoints.execStatusField.getOffset());
// get status for processor
asm.emitLWARX(S0, S1, THREAD_REGISTER);
// are we IN_JNI code?
asm.emitCMPI(S0, RVMThread.IN_JNI + (RVMThread.ALWAYS_LOCK_ON_STATE_TRANSITION ? 100 : 0));
ForwardReference blocked = asm.emitForwardBC(NE);
// S0 <- new state value
asm.emitLVAL(S0, RVMThread.IN_JAVA);
// attempt to change state to java
asm.emitSTWCXr(S0, S1, THREAD_REGISTER);
// branch over blocked call if state change successful
ForwardReference fr = asm.emitForwardBC(EQ);
blocked.resolve(asm);
// if not IN_JNI call RVMThread.leaveJNIBlockedFromCallIntoNative
// T1 gets address of function
asm.emitLAddrOffset(T1, JTOC, Entrypoints.leaveJNIBlockedFromCallIntoNativeMethod.getOffset());
asm.emitMTLR(T1);
// call RVMThread.leaveJNIBlockedFromCallIntoNative
asm.emitBCLRL();
fr.resolve(asm);
// check if GC has occurred, If GC did not occur, then
// VM NON_VOLATILE regs were restored by OS and are valid. If GC did occur
// objects referenced by these restored regs may have moved, in this case we
// restore the nonvolatile registers from our save area,
// where any object references would have been relocated during GC.
// use T2 as scratch (not needed any more on return from call)
//
asm.emitLWZ(T2, frameSize - JNI_GC_FLAG_OFFSET, FP);
asm.emitCMPI(T2, 0);
ForwardReference fr1 = asm.emitForwardBC(EQ);
for (int i = LAST_NONVOLATILE_GPR.value(), offset = JNI_RVM_NONVOLATILE_OFFSET; i >= FIRST_NONVOLATILE_GPR.value(); --i, offset += BYTES_IN_STACKSLOT) {
asm.emitLAddr(GPR.lookup(i), frameSize - offset, FP);
}
fr1.resolve(asm);
// reestablish S0 to hold pointer to JNIEnvironment
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
// pop jrefs frame off the JNIRefs stack, "reopen" the previous top jref frame
// use S1 as scratch, also use T2, T3 for scratch which are no longer needed
// load base of JNIRefs array
asm.emitLAddrOffset(S1, S0, Entrypoints.JNIRefsField.getOffset());
asm.emitLIntOffset(T2, S0, // get saved offset for JNIRefs frame ptr previously pushed onto JNIRefs array
Entrypoints.JNIRefsSavedFPField.getOffset());
// compute offset for new TOP
asm.emitADDI(T3, -BYTES_IN_STACKSLOT, T2);
// store new offset for TOP into JNIEnv
asm.emitSTWoffset(T3, S0, Entrypoints.JNIRefsTopField.getOffset());
// retrieve the previous frame ptr
asm.emitLIntX(T2, S1, T2);
asm.emitSTWoffset(T2, S0, // store new offset for JNIRefs frame ptr into JNIEnv
Entrypoints.JNIRefsSavedFPField.getOffset());
// Restore the return value R3-R4 saved in the glue frame spill area before the migration
if (VM.BuildFor64Addr) {
asm.emitLD(T0, NATIVE_FRAME_HEADER_SIZE, FP);
} else {
asm.emitLWZ(T0, NATIVE_FRAME_HEADER_SIZE, FP);
asm.emitLWZ(T1, NATIVE_FRAME_HEADER_SIZE + BYTES_IN_STACKSLOT, FP);
}
// if the the return type is a reference, the native C is returning a jref
// which is a byte offset from the beginning of the threads JNIRefs stack/array
// of the corresponding ref. In this case, emit code to replace the returned
// offset (in R3) with the ref from the JNIRefs array
TypeReference returnType = method.getReturnType();
if (returnType.isReferenceType()) {
asm.emitCMPI(T0, 0);
ForwardReference globalRef = asm.emitForwardBC(LT);
// Local ref - load from JNIRefs
// S1 is still the base of the JNIRefs array
asm.emitLAddrX(T0, S1, T0);
ForwardReference afterGlobalRef = asm.emitForwardB();
// Deal with global references
globalRef.resolve(asm);
asm.emitLVAL(T3, JNIGlobalRefTable.STRONG_REF_BIT);
asm.emitAND(T1, T0, T3);
asm.emitLAddrOffset(T2, JTOC, Entrypoints.JNIGlobalRefsField.getOffset());
asm.emitCMPI(T1, 0);
ForwardReference weakGlobalRef = asm.emitForwardBC(EQ);
// Strong global references
asm.emitNEG(T0, T0);
// convert index to offset
asm.emitSLWI(T0, T0, LOG_BYTES_IN_ADDRESS);
asm.emitLAddrX(T0, T2, T0);
ForwardReference afterWeakGlobalRef = asm.emitForwardB();
// Weak global references
weakGlobalRef.resolve(asm);
// STRONG_REF_BIT
asm.emitOR(T0, T0, T3);
asm.emitNEG(T0, T0);
// convert index to offset
asm.emitSLWI(T0, T0, LOG_BYTES_IN_ADDRESS);
asm.emitLAddrX(T0, T2, T0);
asm.emitLAddrOffset(T0, T0, Entrypoints.referenceReferentField.getOffset());
afterWeakGlobalRef.resolve(asm);
afterGlobalRef.resolve(asm);
}
// pop the whole stack frame (main & mini), restore the Java caller frame
asm.emitADDI(FP, +frameSize, FP);
// C return value is already where caller expected it (T0/T1 or F0)
// So, just restore the return address to the link register.
asm.emitLAddr(REGISTER_ZERO, STACKFRAME_RETURN_ADDRESS_OFFSET.toInt(), FP);
// restore return address
asm.emitMTLR(REGISTER_ZERO);
// CHECK EXCEPTION AND BRANCH TO ATHROW CODE OR RETURN NORMALLY
asm.emitLIntOffset(T2, S0, Entrypoints.JNIHasPendingExceptionField.getOffset());
// get a zero value to compare
asm.emitLVAL(T3, 0);
asm.emitCMP(T2, T3);
ForwardReference fr3 = asm.emitForwardBC(NE);
// if no pending exception, proceed to return to caller
asm.emitBCLR();
fr3.resolve(asm);
// T1 gets address of function
asm.emitLAddrToc(T1, Entrypoints.jniThrowPendingException.getOffset());
// point LR to the exception delivery code
asm.emitMTCTR(T1);
// then branch to the exception delivery code, does not return
asm.emitBCCTR();
cm.compileComplete(asm.getMachineCodes());
return cm;
}
use of org.jikesrvm.jni.JNICompiledMethod in project JikesRVM by JikesRVM.
the class JNICompiler method compile.
/**
* Compiles a method to handle the Java to C transition and back
* Transitioning from Java to C then back:
* <ol>
* <li>Set up stack frame and save non-volatile registers<li>
* <li>Set up jniEnv - set up a register to hold JNIEnv and store
* the Processor in the JNIEnv for easy access</li>
* <li>Move all native method arguments on to stack (NB at this point all
* non-volatile state is saved)</li>
* <li>Record the frame pointer of the last Java frame (this) in the jniEnv</li>
* <li>Call out to convert reference arguments to IDs</li>
* <li>Set processor as being "in native"</li>
* <li>Set up stack frame and registers for transition to C</li>
* <li>Call out to C</li>
* <li>Save result to stack</li>
* <li>Transition back from "in native" to "in Java", take care that the
* Processor isn't "blocked in native", ie other processors have decided to
* start a GC and we're not permitted to execute Java code whilst this
* occurs</li>
* <li>Convert a reference result (currently a JNI ref) into a true reference</li>
* <li>Release JNI refs</li>
* <li>Restore stack and place result in register</li>
* </ol>
*
* @param method the method to compile
* @return the compiled method (always a {@link JNICompiledMethod})
*/
public static synchronized CompiledMethod compile(NativeMethod method) {
// Meaning of constant offset into frame (assuming 4byte word size):
// Stack frame:
// on entry after prolog
//
// high address high address
// | | | | Caller frame
// | | | |
// + |arg 0 | |arg 0 | <- firstParameterOffset
// + |arg 1 | |arg 1 |
// + |... | |... |
// +8 |arg n-1 | |arg n-1 | <- lastParameterOffset
// +4 |returnAddr| |returnAddr|
// 0 + + +saved FP + <- EBP/FP value in glue frame
// -4 | | |methodID |
// -8 | | |saved EDI |
// -C | | |saved EBX |
// -10 | | |saved EBP |
// -14 | | |saved ENV | (JNIEnvironment)
// -18 | | |arg n-1 | reordered args to native method
// -1C | | | ... | ...
// -20 | | |arg 1 | ...
// -24 | | |arg 0 | ...
// -28 | | |class/obj | required second arg to native method
// -2C | | |jni funcs | required first arg to native method
// -30 | | | |
// | | | |
// | | | |
// low address low address
// Register values:
// EBP - after step 1 EBP holds a frame pointer allowing easy
// access to both this and the proceeding frame
// ESP - gradually floats down as the stack frame is initialized
// S0/ECX - reference to the JNI environment after step 3
JNICompiledMethod cm = (JNICompiledMethod) CompiledMethods.createCompiledMethod(method, CompiledMethod.JNI);
// some size for the instruction array
Assembler asm = new Assembler(100);
Address nativeIP = method.getNativeIP();
final Offset lastParameterOffset = Offset.fromIntSignExtend(2 * WORDSIZE);
// final Offset firstParameterOffset = Offset.fromIntSignExtend(WORDSIZE+(method.getParameterWords() << LG_WORDSIZE));
final TypeReference[] args = method.getParameterTypes();
// (1) Set up stack frame and save non-volatile registers
// TODO: check and resize stack once on the lowest Java to C transition
// on the stack. Not needed if we use the thread original stack
// set 2nd word of header = return address already pushed by CALL
asm.emitPUSH_RegDisp(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset());
// establish new frame
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), SP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), SP);
}
// set first word of header: method ID
if (VM.VerifyAssertions)
VM._assert(STACKFRAME_METHOD_ID_OFFSET.toInt() == -WORDSIZE);
asm.emitPUSH_Imm(cm.getId());
// save nonvolatile registrs: EDI, EBX, EBP
if (VM.VerifyAssertions)
VM._assert(EDI_SAVE_OFFSET.toInt() == -2 * WORDSIZE);
// save nonvolatile EDI register
asm.emitPUSH_Reg(EDI);
if (VM.VerifyAssertions)
VM._assert(EBX_SAVE_OFFSET.toInt() == -3 * WORDSIZE);
// save nonvolatile EBX register
asm.emitPUSH_Reg(EBX);
if (VM.VerifyAssertions)
VM._assert(EBP_SAVE_OFFSET.toInt() == -4 * WORDSIZE);
// save nonvolatile EBP register
asm.emitPUSH_Reg(EBP);
// Establish EBP as the framepointer for use in the rest of the glue frame
if (VM.BuildFor32Addr) {
asm.emitLEA_Reg_RegDisp(EBP, SP, Offset.fromIntSignExtend(4 * WORDSIZE));
} else {
asm.emitLEA_Reg_RegDisp_Quad(EBP, SP, Offset.fromIntSignExtend(4 * WORDSIZE));
}
// S0 = RVMThread.jniEnv
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
} else {
asm.emitMOV_Reg_RegDisp_Quad(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
}
if (VM.VerifyAssertions)
VM._assert(JNI_ENV_OFFSET.toInt() == -5 * WORDSIZE);
// save JNI Env for after call
asm.emitPUSH_Reg(S0);
if (VM.VerifyAssertions)
VM._assert(BP_ON_ENTRY_OFFSET.toInt() == -6 * WORDSIZE);
asm.emitPUSH_RegDisp(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset());
// save BP into JNIEnv
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBP);
}
// (3) Move all native method arguments on to stack (NB at this
// point all non-volatile state is saved)
// (3.1) Count how many arguments could be passed in either FPRs or GPRs
int numFprArgs = 0;
int numGprArgs = 0;
for (TypeReference arg : args) {
if (arg.isFloatingPointType()) {
numFprArgs++;
} else if (VM.BuildFor32Addr && arg.isLongType()) {
numGprArgs += 2;
} else {
numGprArgs++;
}
}
// (3.2) add stack aligning padding
if (VM.BuildFor64Addr) {
int argsInRegisters = Math.min(numFprArgs, NATIVE_PARAMETER_FPRS.length) + Math.min(numGprArgs + 2, NATIVE_PARAMETER_GPRS.length);
int argsOnStack = numGprArgs + numFprArgs + 2 - argsInRegisters;
if (VM.VerifyAssertions)
VM._assert(argsOnStack >= 0);
if ((argsOnStack & 1) != 0) {
// need odd alignment prior to pushes
asm.emitAND_Reg_Imm_Quad(SP, -16);
asm.emitPUSH_Reg(T0);
} else {
// need even alignment prior to pushes
asm.emitAND_Reg_Imm_Quad(SP, -16);
}
}
// (we always pass a this or a class but we only pop this)
if (!method.isStatic()) {
numGprArgs++;
}
// (3.3) Walk over arguments backwards pushing either from memory or registers
Offset currentArg = lastParameterOffset;
int argFpr = numFprArgs - 1;
int argGpr = numGprArgs - 1;
for (int i = args.length - 1; i >= 0; i--) {
TypeReference arg = args[i];
if (arg.isFloatType()) {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSS_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argFpr--;
} else if (arg.isDoubleType()) {
if (VM.BuildFor32Addr) {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
// need 2 slots with 32bit addresses
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSD_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg.plus(WORDSIZE));
// need 2 slots with 32bit addresses
asm.emitPUSH_RegDisp(EBP, currentArg);
}
} else {
if (argFpr < PARAMETER_FPRS.length) {
// make space
asm.emitPUSH_Reg(T0);
if (SSE2_FULL) {
asm.emitMOVSD_RegInd_Reg(SP, (XMM) PARAMETER_FPRS[argFpr]);
} else {
asm.emitFSTP_RegInd_Reg_Quad(SP, FP0);
}
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
}
argFpr--;
currentArg = currentArg.plus(WORDSIZE);
} else if (VM.BuildFor32Addr && arg.isLongType()) {
if (argGpr < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr - 1]);
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr]);
} else if (argGpr - 1 < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr - 1]);
asm.emitPUSH_RegDisp(EBP, currentArg);
} else {
asm.emitPUSH_RegDisp(EBP, currentArg.plus(WORDSIZE));
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argGpr -= 2;
currentArg = currentArg.plus(WORDSIZE);
} else {
if (argGpr < PARAMETER_GPRS.length) {
asm.emitPUSH_Reg(PARAMETER_GPRS[argGpr]);
} else {
asm.emitPUSH_RegDisp(EBP, currentArg);
}
argGpr--;
if (VM.BuildFor64Addr && arg.isLongType()) {
currentArg = currentArg.plus(WORDSIZE);
}
}
currentArg = currentArg.plus(WORDSIZE);
}
// (3.4) push class or object argument
if (method.isStatic()) {
// push java.lang.Class object for klass
Offset klassOffset = Offset.fromIntSignExtend(Statics.findOrCreateObjectLiteral(method.getDeclaringClass().getClassForType()));
asm.generateJTOCpush(klassOffset);
} else {
if (VM.VerifyAssertions)
VM._assert(argGpr == 0);
asm.emitPUSH_Reg(PARAMETER_GPRS[0]);
}
// (3.5) push a pointer to the JNI functions that will be
// dereferenced in native code
asm.emitPUSH_Reg(S0);
if (jniExternalFunctionsFieldOffset != 0) {
if (VM.BuildFor32Addr) {
asm.emitADD_RegInd_Imm(ESP, jniExternalFunctionsFieldOffset);
} else {
asm.emitADD_RegInd_Imm_Quad(ESP, jniExternalFunctionsFieldOffset);
}
}
// (4) Call out to convert reference arguments to IDs, set thread as
// being "in native" and record the frame pointer of the last Java frame
// (this) in the jniEnv
// Encode reference arguments into a long
int encodedReferenceOffsets = 0;
for (int i = 0, pos = 0; i < args.length; i++, pos++) {
TypeReference arg = args[i];
if (arg.isReferenceType()) {
if (VM.VerifyAssertions)
VM._assert(pos < 32);
encodedReferenceOffsets |= 1 << pos;
} else if (VM.BuildFor32Addr && (arg.isLongType() || arg.isDoubleType())) {
pos++;
}
}
// Call out to JNI environment JNI entry
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(PARAMETER_GPRS[0], EBP, JNI_ENV_OFFSET);
} else {
asm.emitMOV_Reg_RegDisp_Quad(PARAMETER_GPRS[0], EBP, JNI_ENV_OFFSET);
}
asm.emitPUSH_Reg(PARAMETER_GPRS[0]);
asm.emitMOV_Reg_Imm(PARAMETER_GPRS[1], encodedReferenceOffsets);
asm.emitPUSH_Reg(PARAMETER_GPRS[1]);
asm.baselineEmitLoadTIB(S0, PARAMETER_GPRS[0]);
asm.emitCALL_RegDisp(S0, Entrypoints.jniEntry.getOffset());
// (5) Set up stack frame and registers for transition to C
int stackholes = 0;
int position = 0;
int argsPassedInRegister = 0;
if (VM.BuildFor64Addr) {
int gpRegistersInUse = 2;
int fpRegistersInUse = 0;
boolean dataOnStack = false;
// JNI env
asm.emitPOP_Reg(NATIVE_PARAMETER_GPRS[0]);
// Object/Class
asm.emitPOP_Reg(NATIVE_PARAMETER_GPRS[1]);
argsPassedInRegister += 2;
for (TypeReference arg : method.getParameterTypes()) {
if (arg.isFloatType()) {
if (fpRegistersInUse < NATIVE_PARAMETER_FPRS.length) {
asm.emitMOVSS_Reg_RegDisp((XMM) NATIVE_PARAMETER_FPRS[fpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
fpRegistersInUse++;
argsPassedInRegister++;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
} else if (arg.isDoubleType()) {
if (fpRegistersInUse < NATIVE_PARAMETER_FPRS.length) {
asm.emitMOVSD_Reg_RegDisp((XMM) NATIVE_PARAMETER_FPRS[fpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
if (VM.BuildFor32Addr)
asm.emitPOP_Reg(T0);
fpRegistersInUse++;
argsPassedInRegister += VM.BuildFor32Addr ? 2 : 1;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
} else {
if (gpRegistersInUse < NATIVE_PARAMETER_GPRS.length) {
// TODO: we can't have holes in the data that is on the stack, we need to shuffle it up
asm.emitMOV_Reg_RegDisp_Quad(NATIVE_PARAMETER_GPRS[gpRegistersInUse], SP, Offset.fromIntZeroExtend(position << LG_WORDSIZE));
if (dataOnStack) {
stackholes |= 1 << position;
} else {
asm.emitPOP_Reg(T0);
}
gpRegistersInUse++;
argsPassedInRegister++;
} else {
// no register available so we have data on the stack
dataOnStack = true;
}
}
if (dataOnStack) {
position++;
}
}
position--;
int onStackOffset = position;
int mask = 0;
for (int i = position; i >= 0; i--) {
mask = 1 << i;
if ((stackholes & mask) != 0) {
continue;
}
if (i < onStackOffset) {
asm.emitMOV_Reg_RegDisp_Quad(T0, SP, Offset.fromIntZeroExtend(i << LOG_BYTES_IN_WORD));
asm.emitMOV_RegDisp_Reg_Quad(SP, Offset.fromIntZeroExtend(onStackOffset << LOG_BYTES_IN_WORD), T0);
}
onStackOffset--;
}
while (onStackOffset >= 0) {
asm.emitPOP_Reg(T0);
onStackOffset--;
}
}
// move address of native code to invoke into T0
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_Imm(T0, nativeIP.toInt());
} else {
asm.emitMOV_Reg_Imm_Quad(T0, nativeIP.toLong());
}
// Trap if stack alignment fails
if (VM.ExtremeAssertions && VM.BuildFor64Addr) {
asm.emitBT_Reg_Imm(ESP, 3);
ForwardReference fr = asm.forwardJcc(LGE);
asm.emitINT_Imm(3);
fr.resolve(asm);
}
// make the call to native code
asm.emitCALL_Reg(T0);
// (7) Discard parameters on stack
if (VM.BuildFor32Addr) {
// throw away args, class/this ptr and env
int argsToThrowAway = method.getParameterWords() + 2 - argsPassedInRegister;
if (argsToThrowAway != 0) {
asm.emitLEA_Reg_RegDisp(SP, EBP, BP_ON_ENTRY_OFFSET);
}
} else {
// throw away args, class/this ptr and env (and padding)
asm.emitLEA_Reg_RegDisp_Quad(SP, EBP, BP_ON_ENTRY_OFFSET);
}
// (8) Save result to stack
final TypeReference returnType = method.getReturnType();
if (returnType.isVoidType()) {
// Nothing to save
} else if (returnType.isFloatType()) {
// adjust stack
asm.emitPUSH_Reg(T0);
if (VM.BuildFor32Addr) {
asm.emitFSTP_RegInd_Reg(ESP, FP0);
} else {
asm.emitMOVSS_RegInd_Reg(ESP, XMM0);
}
} else if (returnType.isDoubleType()) {
// adjust stack
asm.emitPUSH_Reg(T0);
// adjust stack
asm.emitPUSH_Reg(T0);
if (VM.BuildFor32Addr) {
asm.emitFSTP_RegInd_Reg_Quad(ESP, FP0);
} else {
asm.emitMOVSD_RegInd_Reg(ESP, XMM0);
}
} else if (VM.BuildFor32Addr && returnType.isLongType()) {
asm.emitPUSH_Reg(T0);
asm.emitPUSH_Reg(T1);
} else {
// Ensure sign-extension is correct
if (returnType.isBooleanType()) {
asm.emitMOVZX_Reg_Reg_Byte(T0, T0);
} else if (returnType.isByteType()) {
asm.emitMOVSX_Reg_Reg_Byte(T0, T0);
} else if (returnType.isCharType()) {
asm.emitMOVZX_Reg_Reg_Word(T0, T0);
} else if (returnType.isShortType()) {
asm.emitMOVSX_Reg_Reg_Word(T0, T0);
}
asm.emitPUSH_Reg(T0);
}
// (9.1) reload JNIEnvironment from glue frame
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(S0, EBP, JNICompiler.JNI_ENV_OFFSET);
} else {
asm.emitMOV_Reg_RegDisp_Quad(S0, EBP, JNICompiler.JNI_ENV_OFFSET);
}
// (9.2) Reload thread register from JNIEnvironment
if (VM.BuildFor32Addr) {
asm.emitMOV_Reg_RegDisp(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
} else {
asm.emitMOV_Reg_RegDisp_Quad(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
}
// (9.3) Establish frame pointer to this glue method
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), EBP);
} else {
asm.emitMOV_RegDisp_Reg_Quad(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset(), EBP);
}
// result (currently a JNI ref) into a true reference, release JNI refs
if (VM.BuildFor32Addr) {
// 1st arg is JNI Env
asm.emitMOV_Reg_Reg(PARAMETER_GPRS[0], S0);
} else {
// 1st arg is JNI Env
asm.emitMOV_Reg_Reg_Quad(PARAMETER_GPRS[0], S0);
}
if (returnType.isReferenceType()) {
// 2nd arg is ref result
asm.emitPOP_Reg(PARAMETER_GPRS[1]);
} else {
// place dummy (null) operand on stack
asm.emitXOR_Reg_Reg(PARAMETER_GPRS[1], PARAMETER_GPRS[1]);
}
// save JNIEnv
asm.emitPUSH_Reg(S0);
// push arg 1
asm.emitPUSH_Reg(S0);
// push arg 2
asm.emitPUSH_Reg(PARAMETER_GPRS[1]);
// Do the call
asm.baselineEmitLoadTIB(S0, S0);
asm.emitCALL_RegDisp(S0, Entrypoints.jniExit.getOffset());
// restore JNIEnv
asm.emitPOP_Reg(S0);
// place result in register
if (returnType.isVoidType()) {
// Nothing to save
} else if (returnType.isReferenceType()) {
// value already in register
} else if (returnType.isFloatType()) {
if (SSE2_FULL) {
asm.emitMOVSS_Reg_RegInd(XMM0, ESP);
} else {
asm.emitFLD_Reg_RegInd(FP0, ESP);
}
// adjust stack
asm.emitPOP_Reg(T0);
} else if (returnType.isDoubleType()) {
if (SSE2_FULL) {
asm.emitMOVSD_Reg_RegInd(XMM0, ESP);
} else {
asm.emitFLD_Reg_RegInd_Quad(FP0, ESP);
}
// adjust stack
asm.emitPOP_Reg(T0);
// adjust stack
asm.emitPOP_Reg(T0);
} else if (VM.BuildFor32Addr && returnType.isLongType()) {
asm.emitPOP_Reg(T0);
asm.emitPOP_Reg(T1);
} else {
asm.emitPOP_Reg(T0);
}
// saved previous native BP
asm.emitPOP_Reg(EBX);
if (VM.BuildFor32Addr) {
asm.emitMOV_RegDisp_Reg(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBX);
} else {
asm.emitMOV_RegDisp_Reg_Quad(S0, Entrypoints.JNIEnvBasePointerOnEntryToNative.getOffset(), EBX);
}
// throw away JNI env
asm.emitPOP_Reg(EBX);
// restore non-volatile EBP
asm.emitPOP_Reg(EBP);
// restore non-volatile EBX
asm.emitPOP_Reg(EBX);
// restore non-volatile EDI
asm.emitPOP_Reg(EDI);
// throw away cmid
asm.emitPOP_Reg(S0);
asm.emitPOP_RegDisp(THREAD_REGISTER, ArchEntrypoints.framePointerField.getOffset());
// pop parameters from stack (Note that parameterWords does not include "this")
if (method.isStatic()) {
asm.emitRET_Imm(method.getParameterWords() << LG_WORDSIZE);
} else {
asm.emitRET_Imm((method.getParameterWords() + 1) << LG_WORDSIZE);
}
CodeArray code = asm.getMachineCodes();
cm.compileComplete(code);
return cm;
}
use of org.jikesrvm.jni.JNICompiledMethod in project JikesRVM by JikesRVM.
the class CompiledMethods method createCompiledMethod.
public static synchronized CompiledMethod createCompiledMethod(RVMMethod m, int compilerType) {
int id = currentCompiledMethodId + 1;
ensureCapacity(id);
currentCompiledMethodId++;
CompiledMethod cm = null;
if (compilerType == CompiledMethod.BASELINE) {
if (VM.BuildForIA32) {
cm = new org.jikesrvm.compilers.baseline.ia32.ArchBaselineCompiledMethod(id, m);
} else {
if (VM.VerifyAssertions)
VM._assert(VM.BuildForPowerPC);
cm = new org.jikesrvm.compilers.baseline.ppc.ArchBaselineCompiledMethod(id, m);
}
} else if (VM.BuildForOptCompiler && compilerType == CompiledMethod.OPT) {
cm = new OptCompiledMethod(id, m);
} else if (compilerType == CompiledMethod.JNI) {
cm = new JNICompiledMethod(id, m);
} else {
if (VM.VerifyAssertions)
VM._assert(VM.NOT_REACHED, "Unexpected compiler type!");
}
setCompiledMethod(id, cm);
return cm;
}
Aggregations