use of org.jikesrvm.compilers.common.assembler.ppc.Assembler in project JikesRVM by JikesRVM.
the class JNICompiler method genSVR4ParameterPassingCode.
/**
* Generates instructions to copy parameters from RVM convention to OS convention.
* @param asm The {@link Assembler} object
* @param types The parameter types
* @param nextVMArgReg The first parameter GPR in RVM convention,
* the last parameter GPR is defined as LAST_VOLATILE_GPR.
* @param nextVMArgFloatReg The first parameter FPR in RVM convention,
* the last parameter FPR is defined as LAST_VOLATILE_FPR.
* @param spillOffsetVM The spill offset (related to FP) in RVM convention
* @param nextOSArgReg the first parameter GPR in OS convention,
* the last parameter GPR is defined as LAST_OS_PARAMETER_GPR.
* @param nextOSArgFloatReg The first parameter FPR in OS convention,
* the last parameter FPR is defined as LAST_OS_PARAMETER_FPR.
* @param spillOffsetOS The spill offset (related to FP) in OS convention
*/
private static void genSVR4ParameterPassingCode(Assembler asm, TypeReference[] types, int nextVMArgReg, int nextVMArgFloatReg, int spillOffsetVM, int nextOSArgReg, int nextOSArgFloatReg, int spillOffsetOS) {
if (VM.BuildForSVR4ABI) {
// create one Assembler object for each argument
// This is needed for the following reason:
// -2 new arguments are added in front for native methods, so the normal arguments
// need to be shifted down in addition to being moved
// -to avoid overwriting each other, the arguments must be copied in reverse order
// -the analysis for mapping however must be done in forward order
// -the moving/mapping for each argument may involve a sequence of 1-3 instructions
// which must be kept in the normal order
// To solve this problem, the instructions for each argument is generated in its
// own Assembler in the forward pass, then in the reverse pass, each Assembler
// emist the instruction sequence and copies it into the main Assembler
int numArguments = types.length;
Assembler[] asmForArgs = new Assembler[numArguments];
for (int arg = 0; arg < numArguments; arg++) {
asmForArgs[arg] = new Assembler(0);
Assembler asmArg = asmForArgs[arg];
//
if (types[arg].isFloatingPointType()) {
boolean is32bits = types[arg].isFloatType();
// 1. check the source, the value will be in srcVMArg
// scratch fpr
FPR srcVMArg;
if (nextVMArgFloatReg <= LAST_VOLATILE_FPR.value()) {
srcVMArg = FPR.lookup(nextVMArgFloatReg);
nextVMArgFloatReg++;
} else {
srcVMArg = FIRST_SCRATCH_FPR;
// VM float reg is in spill area
if (is32bits) {
spillOffsetVM += BYTES_IN_STACKSLOT;
asmArg.emitLFS(srcVMArg, spillOffsetVM - BYTES_IN_FLOAT, FP);
} else {
asmArg.emitLFD(srcVMArg, spillOffsetVM, FP);
spillOffsetVM += BYTES_IN_DOUBLE;
}
}
// 2. check the destination,
if (nextOSArgFloatReg <= LAST_OS_PARAMETER_FPR.value()) {
// leave it there
nextOSArgFloatReg++;
} else {
if (VM.BuildForSVR4ABI) {
if (is32bits) {
asmArg.emitSTFS(srcVMArg, spillOffsetOS, FP);
spillOffsetOS += BYTES_IN_ADDRESS;
} else {
// spill it, round the spill address to 8
// assuming FP is aligned to 8
spillOffsetOS = (spillOffsetOS + 7) & -8;
asmArg.emitSTFD(srcVMArg, spillOffsetOS, FP);
spillOffsetOS += BYTES_IN_DOUBLE;
}
}
}
// for 64-bit long arguments
} else if (types[arg].isLongType() && VM.BuildFor32Addr) {
// handle OS first
boolean dstSpilling;
// it is register number or spilling offset
int regOrSpilling = -1;
// 1. check if Linux register > 9
if (nextOSArgReg > (LAST_OS_PARAMETER_GPR.value() - 1)) {
// goes to spilling area
dstSpilling = true;
if (VM.BuildForSVR4ABI) {
/* NOTE: following adjustment is not stated in SVR4 ABI, but
* was implemented in GCC.
* -- Feng
*/
nextOSArgReg = LAST_OS_PARAMETER_GPR.value() + 1;
// do alignment and compute spilling offset
spillOffsetOS = (spillOffsetOS + 7) & -8;
regOrSpilling = spillOffsetOS;
spillOffsetOS += BYTES_IN_LONG;
}
} else {
// use registers
dstSpilling = false;
if (VM.BuildForSVR4ABI) {
// rounds to odd
// if gpr is even, gpr += 1
nextOSArgReg += (nextOSArgReg + 1) & 0x01;
regOrSpilling = nextOSArgReg;
nextOSArgReg += 2;
}
}
// handle RVM source
if (nextVMArgReg < LAST_VOLATILE_GPR.value()) {
// both parts in registers
if (dstSpilling) {
asmArg.emitSTW(GPR.lookup(nextVMArgReg + 1), regOrSpilling + 4, FP);
if (VM.BuildForSVR4ABI) {
asmArg.emitSTW(GPR.lookup(nextVMArgReg), regOrSpilling, FP);
}
} else {
asmArg.emitMR(GPR.lookup(regOrSpilling + 1), GPR.lookup(nextVMArgReg + 1));
asmArg.emitMR(GPR.lookup(regOrSpilling), GPR.lookup(nextVMArgReg));
}
// advance register counting, Linux register number
// already advanced
nextVMArgReg += 2;
} else if (nextVMArgReg == LAST_VOLATILE_GPR.value()) {
// VM striding
if (dstSpilling) {
asmArg.emitLWZ(REGISTER_ZERO, spillOffsetVM, FP);
asmArg.emitSTW(REGISTER_ZERO, regOrSpilling + 4, FP);
asmArg.emitSTW(GPR.lookup(nextVMArgReg), regOrSpilling, FP);
} else {
asmArg.emitLWZ(GPR.lookup(regOrSpilling + 1), spillOffsetVM, FP);
asmArg.emitMR(GPR.lookup(regOrSpilling), GPR.lookup(nextVMArgReg));
}
// advance spillOffsetVM and nextVMArgReg
nextVMArgReg++;
spillOffsetVM += BYTES_IN_STACKSLOT;
} else if (nextVMArgReg > LAST_VOLATILE_GPR.value()) {
if (dstSpilling) {
asmArg.emitLFD(FIRST_SCRATCH_FPR, spillOffsetVM, FP);
asmArg.emitSTFD(FIRST_SCRATCH_FPR, regOrSpilling, FP);
} else {
// this shouldnot happen, VM spills, OS has registers
asmArg.emitLWZ(GPR.lookup(regOrSpilling + 1), spillOffsetVM + 4, FP);
asmArg.emitLWZ(GPR.lookup(regOrSpilling), spillOffsetVM, FP);
}
spillOffsetVM += BYTES_IN_LONG;
}
} else if (types[arg].isLongType() && VM.BuildFor64Addr) {
// handle OS first
boolean dstSpilling;
// it is register number or spilling offset
int regOrSpilling = -1;
// 1. check if Linux register > 9
if (nextOSArgReg > LAST_OS_PARAMETER_GPR.value()) {
// goes to spilling area
dstSpilling = true;
/* NOTE: following adjustment is not stated in SVR4 ABI, but
* was implemented in GCC.
* -- Feng
*/
nextOSArgReg = LAST_OS_PARAMETER_GPR.value() + 1;
// do alignment and compute spilling offset
spillOffsetOS = (spillOffsetOS + 7) & -8;
regOrSpilling = spillOffsetOS;
spillOffsetOS += BYTES_IN_LONG;
} else {
// use registers
dstSpilling = false;
// rounds to odd
regOrSpilling = nextOSArgReg;
nextOSArgReg += 1;
}
// handle RVM source
if (nextVMArgReg <= LAST_VOLATILE_GPR.value()) {
// both parts in registers
if (dstSpilling) {
asmArg.emitSTD(GPR.lookup(nextVMArgReg), regOrSpilling, FP);
} else {
asmArg.emitMR(GPR.lookup(regOrSpilling), GPR.lookup(nextVMArgReg));
}
// advance register counting, Linux register number
// already advanced
nextVMArgReg += 1;
} else if (nextVMArgReg > LAST_VOLATILE_GPR.value()) {
if (dstSpilling) {
asmArg.emitLFD(FIRST_SCRATCH_FPR, spillOffsetVM, FP);
asmArg.emitSTFD(FIRST_SCRATCH_FPR, regOrSpilling, FP);
} else {
// this shouldnot happen, VM spills, OS has registers;
asmArg.emitLD(GPR.lookup(regOrSpilling), spillOffsetVM, FP);
}
spillOffsetVM += BYTES_IN_LONG;
}
} else if (types[arg].isReferenceType()) {
// For reference type, replace with handles before passing to native
GPR srcreg;
if (nextVMArgReg <= LAST_VOLATILE_GPR.value()) {
srcreg = GPR.lookup(nextVMArgReg++);
} else {
srcreg = REGISTER_ZERO;
asmArg.emitLAddr(srcreg, spillOffsetVM, FP);
spillOffsetVM += BYTES_IN_ADDRESS;
}
// Are we passing NULL?
asmArg.emitCMPI(srcreg, 0);
ForwardReference isNull = asmArg.emitForwardBC(EQ);
// NO: put it in the JNIRefs array and pass offset
asmArg.emitSTAddrU(srcreg, BYTES_IN_ADDRESS, KLUDGE_TI_REG);
if (nextOSArgReg <= LAST_OS_PARAMETER_GPR.value()) {
asmArg.emitSUBFC(GPR.lookup(nextOSArgReg), THREAD_REGISTER, KLUDGE_TI_REG);
} else {
asmArg.emitSUBFC(REGISTER_ZERO, THREAD_REGISTER, KLUDGE_TI_REG);
asmArg.emitSTAddr(REGISTER_ZERO, spillOffsetOS, FP);
}
ForwardReference done = asmArg.emitForwardB();
// YES: pass NULL (0)
isNull.resolve(asmArg);
if (nextOSArgReg <= LAST_OS_PARAMETER_GPR.value()) {
asmArg.emitLVAL(GPR.lookup(nextOSArgReg), 0);
} else {
asmArg.emitSTAddr(srcreg, spillOffsetOS, FP);
}
// JOIN PATHS
done.resolve(asmArg);
if (VM.BuildForSVR4ABI) {
if (nextOSArgReg <= LAST_OS_PARAMETER_GPR.value()) {
nextOSArgReg++;
} else {
spillOffsetOS += BYTES_IN_ADDRESS;
}
}
} else {
// (1a) fit in OS register, move the register
if (nextOSArgReg <= LAST_OS_PARAMETER_GPR.value()) {
if (VM.BuildForSVR4ABI) {
asmArg.emitMR(GPR.lookup(nextOSArgReg++), GPR.lookup(nextVMArgReg++));
} else {
asmArg.emitMR(GPR.lookup(nextOSArgReg), GPR.lookup(nextVMArgReg++));
}
} else if (nextVMArgReg <= LAST_VOLATILE_GPR.value()) {
// (1b) spill OS register, but still fit in VM register
asmArg.emitSTAddr(GPR.lookup(nextVMArgReg++), spillOffsetOS, FP);
if (VM.BuildForSVR4ABI) {
spillOffsetOS += BYTES_IN_ADDRESS;
}
} else {
// (1c) spill VM register
spillOffsetVM += BYTES_IN_STACKSLOT;
// retrieve arg from VM spill area
asmArg.emitLInt(REGISTER_ZERO, spillOffsetVM - BYTES_IN_INT, FP);
asmArg.emitSTAddr(REGISTER_ZERO, spillOffsetOS, FP);
if (VM.BuildForSVR4ABI) {
spillOffsetOS += BYTES_IN_ADDRESS;
}
}
}
}
// so that the move does not overwrite the parameters
for (int arg = asmForArgs.length - 1; arg >= 0; arg--) {
asm.appendInstructions(asmForArgs[arg].getMachineCodes());
}
}
}
use of org.jikesrvm.compilers.common.assembler.ppc.Assembler in project JikesRVM by JikesRVM.
the class JNICompiler method compile.
/**
* This method creates the stub to link native method. It will be called
* from the lazy linker the first time a native method is invoked. The stub
* generated will be patched by the lazy linker to link to the native method
* for all future calls. <p>
* <pre>
* The stub performs the following tasks in the prologue:
* <ol>
* <li>Allocate the glue frame
* <li>Save the TR and JTOC registers in the JNI Environment for reentering Java later
* <li>Shuffle the parameters in the registers to conform to the OS calling convention
* <li>Save the nonvolatile registers in a known space in the frame to be used
* for the GC stack map
* <li>Push a new JREF frame on the JNIRefs stack
* <li>Supply the first JNI argument: the JNI environment pointer
* <li>Supply the second JNI argument: class object if static, "this" if virtual
* </ol>
* <p>
* The stub performs the following tasks in the epilogue:
* <ol>
* <li>Restore TR and JTOC registers saved in JNI Environment
* <li>Restore the nonvolatile registers if GC has occurred
* <li>Pop the JREF frame off the JNIRefs stack
* <li>Check for pending exception and deliver to Java caller if present
* <li>Process the return value from native: push onto caller's Java stack
* </ol>
* <p>
* Within the stackframe, we have two frames.
* The "main" frame exactly follows the OS native ABI and is therefore
* different for each ABI.
* The "mini-frame" is identical on all platforms and is stores RVM-specific fields.
* The picture below shows the frames for 64-bit PowerPC ELF ABI.
* <pre>
*
* | fp | <- native frame
* | cr |
* | lr |
* | resv |
* | resv |
* + toc +
* | |
* | |
* |----------| <- Java to C glue frame using native calling conventions
* | fp | saved fp of mini-frame
* | cr |
* | lr | native caller saves return address of native method here
* | resv |
* | resv |
* + toc +
* | 0 | spill area (at least 8 words reserved)
* | 1 | (also used for saving volatile regs during calls in prolog)
* | 2 |
* | 3 |
* | 4 |
* | 5 |
* | 6 |
* | 7 |
* | ... |
* |----------| <- mini-frame for use by RVM stackwalkers
* | fp | saved fp of Java caller <- JNI_SAVE_AREA_OFFSET
* | mid | cmid of native method
* | xxx (lr) | lr slot not used in mini frame
* |GC flag | did GC happen while thread in native? <- JNI_GC_FLAG_OFFSET
* |ENV | JNIEnvironment <- JNI_ENV_OFFSET
* |RVM nonvol| save RVM nonvolatile GPRs for updating by GC stack mapper
* | ... |
* |RVM nonvol| <- JNI_RVM_NONVOLATILE_OFFSET
* |----------|
* | fp | <- Java caller frame
* | mid |
* | xxx |
* | |
* | |
* | |
* |----------|
* | |
* </pre>
* <p>
* Runtime.unwindNativeStackFrame will return a pointer to the mini-frame
* because none of our stack walkers need to do anything with the main frame.
*/
public static synchronized CompiledMethod compile(NativeMethod method) {
JNICompiledMethod cm = (JNICompiledMethod) CompiledMethods.createCompiledMethod(method, CompiledMethod.JNI);
int compiledMethodId = cm.getId();
Assembler asm = new Assembler(0);
int frameSize = getFrameSize(method);
RVMClass klass = method.getDeclaringClass();
// need 4 gp temps
if (VM.VerifyAssertions)
VM._assert(T3.value() <= LAST_VOLATILE_GPR.value());
// need 4 fp temps
if (VM.VerifyAssertions)
VM._assert(F3.value() <= LAST_VOLATILE_FPR.value());
if (VM.VerifyAssertions)
VM._assert(S0.value() < S1.value() && // need 2 scratch
S1.value() <= LAST_SCRATCH_GPR.value());
Address nativeIP = method.getNativeIP();
Address nativeTOC = method.getNativeTOC();
// NOTE: this must be done before the condition Thread.hasNativeStackFrame() become true
// so that the first Java to C transition will be allowed to resize the stack
// (currently, this is true when the JNIRefsTop index has been incremented from 0)
// add at least 14 for C frame (header + spill)
asm.emitNativeStackOverflowCheck(frameSize + 14);
// save return address in caller frame
asm.emitMFLR(REGISTER_ZERO);
asm.emitSTAddr(REGISTER_ZERO, STACKFRAME_RETURN_ADDRESS_OFFSET.toInt(), FP);
// buy mini frame
asm.emitSTAddrU(FP, -JNI_SAVE_AREA_SIZE, FP);
// store CMID for native method in mini-frame
asm.emitLVAL(S0, compiledMethodId);
asm.emitSTW(S0, STACKFRAME_METHOD_ID_OFFSET.toInt(), FP);
// buy main frame, the total size equals to frameSize
asm.emitSTAddrU(FP, -frameSize + JNI_SAVE_AREA_SIZE, FP);
// establish S0 -> threads JNIEnv structure
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
// save the TR register in the JNIEnvironment object for possible calls back into Java
asm.emitSTAddrOffset(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
// save the JNIEnvironment in the stack frame so we can use it to acquire the TR
// when we return from native code.
// save TR in frame
asm.emitSTAddr(S0, frameSize - JNI_ENV_OFFSET, FP);
// save mini-frame frame pointer in JNIEnv, JNITopJavaFP, which will be the frame
// to start scanning this stack during GC, if top of stack is still executing in C
asm.emitLAddr(THREAD_REGISTER, 0, FP);
asm.emitSTAddrOffset(THREAD_REGISTER, S0, Entrypoints.JNITopJavaFPField.getOffset());
// save the RVM nonvolatile GPRs, to be scanned by GC stack mapper
for (int i = LAST_NONVOLATILE_GPR.value(), offset = JNI_RVM_NONVOLATILE_OFFSET; i >= FIRST_NONVOLATILE_GPR.value(); --i, offset += BYTES_IN_STACKSLOT) {
asm.emitSTAddr(GPR.lookup(i), frameSize - offset, FP);
}
// clear the GC flag on entry to native code
// use TR as scratch
asm.emitLVAL(THREAD_REGISTER, 0);
asm.emitSTW(THREAD_REGISTER, frameSize - JNI_GC_FLAG_OFFSET, FP);
// generate the code to map the parameters to OS convention and add the
// second parameter (either the "this" ptr or class if a static method).
// The JNI Function ptr first parameter is set before making the call
// by the out of line machine code we invoke below.
// Opens a new frame in the JNIRefs table to register the references.
// Assumes S0 set to JNIEnv, kills KLUDGE_TI_REG, S1 & THREAD_REGISTER
// On return, S0 still contains JNIEnv
storeParameters(asm, frameSize, method, klass);
//
// Load required JNI function ptr into first parameter reg (GPR3/T0)
// This pointer is an interior pointer to the JNIEnvironment which is
// currently in S0.
//
asm.emitADDI(T0, Entrypoints.JNIExternalFunctionsField.getOffset(), S0);
//
// change the status of the thread to IN_JNI
//
asm.emitLAddrOffset(THREAD_REGISTER, S0, Entrypoints.JNIEnvSavedTRField.getOffset());
asm.emitLVALAddr(S1, Entrypoints.execStatusField.getOffset());
// get status for thread
asm.emitLWARX(S0, S1, THREAD_REGISTER);
// we should be in java code?
asm.emitCMPI(S0, RVMThread.IN_JAVA + (RVMThread.ALWAYS_LOCK_ON_STATE_TRANSITION ? 100 : 0));
ForwardReference notInJava = asm.emitForwardBC(NE);
// S0 <- new state value
asm.emitLVAL(S0, RVMThread.IN_JNI);
// attempt to change state to IN_JNI
asm.emitSTWCXr(S0, S1, THREAD_REGISTER);
// branch if success over slow path
ForwardReference enteredJNIRef = asm.emitForwardBC(EQ);
notInJava.resolve(asm);
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.threadContextRegistersField.getOffset());
asm.emitLAddrOffset(S1, JTOC, ArchEntrypoints.saveVolatilesInstructionsField.getOffset());
asm.emitMTLR(S1);
asm.emitBCLRL();
// NOTE: THREAD_REGISTER should still have the thread
// pointer, since up to this point we would have saved it but not
// overwritten it.
// call into our friendly slow path function. note that this should
// work because:
// 1) we're not calling from C so we don't care what registers are
// considered non-volatile in C
// 2) all Java non-volatiles have been saved
// 3) the only other registers we need - TR and S0 are taken care
// of (see above)
// 4) the prologue and epilogue will take care of the frame pointer
// accordingly (it will just save it on the stack and then restore
// it - so we don't even have to know what its value is here)
// the only thing we have to make sure of is that MMTk ignores the
// framePointer field in RVMThread and uses the one in the JNI
// environment instead (see Collection.prepareMutator)...
// T1 gets address of function
asm.emitLAddrOffset(S1, JTOC, Entrypoints.enterJNIBlockedFromCallIntoNativeMethod.getOffset());
asm.emitMTLR(S1);
// call RVMThread.enterJNIBlocked
asm.emitBCLRL();
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.threadContextRegistersField.getOffset());
asm.emitLAddrOffset(S1, JTOC, ArchEntrypoints.restoreVolatilesInstructionsField.getOffset());
asm.emitMTLR(S1);
asm.emitBCLRL();
// come here when we're done
enteredJNIRef.resolve(asm);
// set the TOC and IP for branch to out_of_line code
asm.emitLVALAddr(JTOC, nativeTOC);
asm.emitLVALAddr(S1, nativeIP);
// move native code address to CTR reg;
// do this early so that S1 will be available as a scratch.
asm.emitMTCTR(S1);
//
// CALL NATIVE METHOD
//
asm.emitBCCTRL();
// if we have to call sysVirtualProcessorYield because we are locked in native.
if (VM.BuildFor64Addr) {
asm.emitSTD(T0, NATIVE_FRAME_HEADER_SIZE, FP);
} else {
asm.emitSTW(T0, NATIVE_FRAME_HEADER_SIZE, FP);
asm.emitSTW(T1, NATIVE_FRAME_HEADER_SIZE + BYTES_IN_ADDRESS, FP);
}
//
// try to return thread status to IN_JAVA
//
int label1 = asm.getMachineCodeIndex();
// TODO: we can do this directly from FP because we know framesize at compiletime
// (the same way we stored the JNI Env above)
// get mini-frame
asm.emitLAddr(S0, 0, FP);
// get Java caller FP
asm.emitLAddr(S0, 0, S0);
// load JNIEnvironment into TR
asm.emitLAddr(THREAD_REGISTER, -JNI_ENV_OFFSET, S0);
// Restore JTOC and TR
asm.emitLAddrOffset(JTOC, THREAD_REGISTER, Entrypoints.JNIEnvSavedJTOCField.getOffset());
asm.emitLAddrOffset(THREAD_REGISTER, THREAD_REGISTER, Entrypoints.JNIEnvSavedTRField.getOffset());
asm.emitLVALAddr(S1, Entrypoints.execStatusField.getOffset());
// get status for processor
asm.emitLWARX(S0, S1, THREAD_REGISTER);
// are we IN_JNI code?
asm.emitCMPI(S0, RVMThread.IN_JNI + (RVMThread.ALWAYS_LOCK_ON_STATE_TRANSITION ? 100 : 0));
ForwardReference blocked = asm.emitForwardBC(NE);
// S0 <- new state value
asm.emitLVAL(S0, RVMThread.IN_JAVA);
// attempt to change state to java
asm.emitSTWCXr(S0, S1, THREAD_REGISTER);
// branch over blocked call if state change successful
ForwardReference fr = asm.emitForwardBC(EQ);
blocked.resolve(asm);
// if not IN_JNI call RVMThread.leaveJNIBlockedFromCallIntoNative
// T1 gets address of function
asm.emitLAddrOffset(T1, JTOC, Entrypoints.leaveJNIBlockedFromCallIntoNativeMethod.getOffset());
asm.emitMTLR(T1);
// call RVMThread.leaveJNIBlockedFromCallIntoNative
asm.emitBCLRL();
fr.resolve(asm);
// check if GC has occurred, If GC did not occur, then
// VM NON_VOLATILE regs were restored by OS and are valid. If GC did occur
// objects referenced by these restored regs may have moved, in this case we
// restore the nonvolatile registers from our save area,
// where any object references would have been relocated during GC.
// use T2 as scratch (not needed any more on return from call)
//
asm.emitLWZ(T2, frameSize - JNI_GC_FLAG_OFFSET, FP);
asm.emitCMPI(T2, 0);
ForwardReference fr1 = asm.emitForwardBC(EQ);
for (int i = LAST_NONVOLATILE_GPR.value(), offset = JNI_RVM_NONVOLATILE_OFFSET; i >= FIRST_NONVOLATILE_GPR.value(); --i, offset += BYTES_IN_STACKSLOT) {
asm.emitLAddr(GPR.lookup(i), frameSize - offset, FP);
}
fr1.resolve(asm);
// reestablish S0 to hold pointer to JNIEnvironment
asm.emitLAddrOffset(S0, THREAD_REGISTER, Entrypoints.jniEnvField.getOffset());
// pop jrefs frame off the JNIRefs stack, "reopen" the previous top jref frame
// use S1 as scratch, also use T2, T3 for scratch which are no longer needed
// load base of JNIRefs array
asm.emitLAddrOffset(S1, S0, Entrypoints.JNIRefsField.getOffset());
asm.emitLIntOffset(T2, S0, // get saved offset for JNIRefs frame ptr previously pushed onto JNIRefs array
Entrypoints.JNIRefsSavedFPField.getOffset());
// compute offset for new TOP
asm.emitADDI(T3, -BYTES_IN_STACKSLOT, T2);
// store new offset for TOP into JNIEnv
asm.emitSTWoffset(T3, S0, Entrypoints.JNIRefsTopField.getOffset());
// retrieve the previous frame ptr
asm.emitLIntX(T2, S1, T2);
asm.emitSTWoffset(T2, S0, // store new offset for JNIRefs frame ptr into JNIEnv
Entrypoints.JNIRefsSavedFPField.getOffset());
// Restore the return value R3-R4 saved in the glue frame spill area before the migration
if (VM.BuildFor64Addr) {
asm.emitLD(T0, NATIVE_FRAME_HEADER_SIZE, FP);
} else {
asm.emitLWZ(T0, NATIVE_FRAME_HEADER_SIZE, FP);
asm.emitLWZ(T1, NATIVE_FRAME_HEADER_SIZE + BYTES_IN_STACKSLOT, FP);
}
// if the the return type is a reference, the native C is returning a jref
// which is a byte offset from the beginning of the threads JNIRefs stack/array
// of the corresponding ref. In this case, emit code to replace the returned
// offset (in R3) with the ref from the JNIRefs array
TypeReference returnType = method.getReturnType();
if (returnType.isReferenceType()) {
asm.emitCMPI(T0, 0);
ForwardReference globalRef = asm.emitForwardBC(LT);
// Local ref - load from JNIRefs
// S1 is still the base of the JNIRefs array
asm.emitLAddrX(T0, S1, T0);
ForwardReference afterGlobalRef = asm.emitForwardB();
// Deal with global references
globalRef.resolve(asm);
asm.emitLVAL(T3, JNIGlobalRefTable.STRONG_REF_BIT);
asm.emitAND(T1, T0, T3);
asm.emitLAddrOffset(T2, JTOC, Entrypoints.JNIGlobalRefsField.getOffset());
asm.emitCMPI(T1, 0);
ForwardReference weakGlobalRef = asm.emitForwardBC(EQ);
// Strong global references
asm.emitNEG(T0, T0);
// convert index to offset
asm.emitSLWI(T0, T0, LOG_BYTES_IN_ADDRESS);
asm.emitLAddrX(T0, T2, T0);
ForwardReference afterWeakGlobalRef = asm.emitForwardB();
// Weak global references
weakGlobalRef.resolve(asm);
// STRONG_REF_BIT
asm.emitOR(T0, T0, T3);
asm.emitNEG(T0, T0);
// convert index to offset
asm.emitSLWI(T0, T0, LOG_BYTES_IN_ADDRESS);
asm.emitLAddrX(T0, T2, T0);
asm.emitLAddrOffset(T0, T0, Entrypoints.referenceReferentField.getOffset());
afterWeakGlobalRef.resolve(asm);
afterGlobalRef.resolve(asm);
}
// pop the whole stack frame (main & mini), restore the Java caller frame
asm.emitADDI(FP, +frameSize, FP);
// C return value is already where caller expected it (T0/T1 or F0)
// So, just restore the return address to the link register.
asm.emitLAddr(REGISTER_ZERO, STACKFRAME_RETURN_ADDRESS_OFFSET.toInt(), FP);
// restore return address
asm.emitMTLR(REGISTER_ZERO);
// CHECK EXCEPTION AND BRANCH TO ATHROW CODE OR RETURN NORMALLY
asm.emitLIntOffset(T2, S0, Entrypoints.JNIHasPendingExceptionField.getOffset());
// get a zero value to compare
asm.emitLVAL(T3, 0);
asm.emitCMP(T2, T3);
ForwardReference fr3 = asm.emitForwardBC(NE);
// if no pending exception, proceed to return to caller
asm.emitBCLR();
fr3.resolve(asm);
// T1 gets address of function
asm.emitLAddrToc(T1, Entrypoints.jniThrowPendingException.getOffset());
// point LR to the exception delivery code
asm.emitMTCTR(T1);
// then branch to the exception delivery code, does not return
asm.emitBCCTR();
cm.compileComplete(asm.getMachineCodes());
return cm;
}
use of org.jikesrvm.compilers.common.assembler.ppc.Assembler in project JikesRVM by JikesRVM.
the class Barriers method compilePutfieldBarrierImm.
// on entry java stack contains ...|target_ref|ref_to_store|
static void compilePutfieldBarrierImm(BaselineCompilerImpl comp, Offset fieldOffset, int locationMetadata) {
Assembler asm = comp.asm;
asm.emitLAddrToc(S0, Entrypoints.objectFieldWriteBarrierMethod.getOffset());
asm.emitMTCTR(S0);
// object base
comp.peekAddr(T0, 1);
asm.emitNullCheck(T0);
// offset
asm.emitLVALAddr(T2, fieldOffset);
// value to store
comp.peekAddr(T1, 0);
asm.emitLVAL(T3, locationMetadata);
// MemoryManager.putfieldWriteBarrier(T0,T1,T2,T3)
asm.emitBCCTRL();
}
use of org.jikesrvm.compilers.common.assembler.ppc.Assembler in project JikesRVM by JikesRVM.
the class Barriers method compilePutfieldBarrierDoubleImm.
// on entry java stack contains ...|target_ref|value_to_store|
static void compilePutfieldBarrierDoubleImm(BaselineCompilerImpl comp, Offset fieldOffset, int locationMetadata) {
Assembler asm = comp.asm;
asm.emitLAddrToc(S0, Entrypoints.doubleFieldWriteBarrierMethod.getOffset());
asm.emitMTCTR(S0);
// store target_ref in T0
comp.peekAddr(T0, 2);
asm.emitNullCheck(T0);
// store value_to_store in F0
comp.peekDouble(F0, 0);
// store offset in T1
asm.emitLVALAddr(T1, fieldOffset);
// store locationMetaData in T2
asm.emitLVAL(T2, locationMetadata);
// call barrier with parameters in (T0,F0,T1,T2)
asm.emitBCCTRL();
// clean up stack
comp.discardSlots(3);
}
use of org.jikesrvm.compilers.common.assembler.ppc.Assembler in project JikesRVM by JikesRVM.
the class Barriers method compileGetstaticBarrier.
// on entry java stack contains ...|
// T0 already contains the offset of the field on entry
static void compileGetstaticBarrier(BaselineCompilerImpl comp, int locationMetadata) {
Assembler asm = comp.asm;
asm.emitLAddrToc(S0, Entrypoints.objectStaticReadBarrierMethod.getOffset());
asm.emitMTCTR(S0);
asm.emitLVAL(T1, locationMetadata);
// MemoryManager.getstaticReadBarrier(T0,T1)
asm.emitBCCTRL();
}
Aggregations