use of org.jikesrvm.compilers.baseline.ppc.ArchBaselineCompiledMethod in project JikesRVM by JikesRVM.
the class BaselineExecutionStateExtractor method extractState.
@Override
public ExecutionState extractState(RVMThread thread, Offset tsFromFPoff, Offset methFPoff, int cmid) {
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("BASE execStateExtractor starting ...");
}
AbstractRegisters contextRegisters = thread.getContextRegisters();
byte[] stack = thread.getStack();
if (VM.VerifyAssertions) {
int fooCmid = Magic.getIntAtOffset(stack, methFPoff.plus(STACKFRAME_METHOD_ID_OFFSET));
VM._assert(fooCmid == cmid);
}
ArchBaselineCompiledMethod fooCM = (ArchBaselineCompiledMethod) CompiledMethods.getCompiledMethod(cmid);
NormalMethod fooM = (NormalMethod) fooCM.getMethod();
// get the next bc index
VM.disableGC();
Address rowIP = Magic.objectAsAddress(stack).loadAddress(methFPoff.plus(STACKFRAME_RETURN_ADDRESS_OFFSET));
Offset ipOffset = fooCM.getInstructionOffset(rowIP);
VM.enableGC();
// CAUTION: IP Offset should point to next instruction
int bcIndex = fooCM.findBytecodeIndexForInstruction(ipOffset.plus(INSTRUCTION_WIDTH));
// assertions
if (VM.VerifyAssertions)
VM._assert(bcIndex != -1);
// create execution state object
ExecutionState state = new ExecutionState(thread, methFPoff, cmid, bcIndex, tsFromFPoff);
/* extract values for local and stack, but first of all
* we need to get type information for current PC.
*/
BytecodeTraverser typer = new BytecodeTraverser();
typer.computeLocalStackTypes(fooM, bcIndex);
byte[] localTypes = typer.getLocalTypes();
byte[] stackTypes = typer.getStackTypes();
// type. We should remove non-reference type
for (int i = 0, n = localTypes.length; i < n; i++) {
// if typer reports a local is reference type, but the GC map says no
// then set the localType to uninitialized, see VM spec, bytecode verifier
// CAUTION: gc map uses mc offset in bytes!!!
boolean gcref = fooCM.referenceMaps.isLocalRefType(fooM, ipOffset.plus(INSTRUCTION_WIDTH), i);
if (!gcref && (localTypes[i] == ClassTypeCode)) {
// use gc map as reference
localTypes[i] = VoidTypeCode;
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("GC maps disgrees with type matcher at " + i + "th local");
VM.sysWriteln();
}
}
}
if (VM.TraceOnStackReplacement) {
Offset ipIndex = ipOffset.toWord().rsha(LG_INSTRUCTION_WIDTH).toOffset();
VM.sysWriteln("BC Index : " + bcIndex);
VM.sysWriteln("IP Index : ", ipIndex.plus(1));
VM.sysWriteln("MC Offset : ", ipOffset.plus(INSTRUCTION_WIDTH));
VM.sysWrite("Local Types :");
for (byte localType : localTypes) {
VM.sysWrite(" " + (char) localType);
}
VM.sysWriteln();
VM.sysWrite("Stack Types :");
for (byte stackType : stackTypes) {
VM.sysWrite(" " + (char) stackType);
}
VM.sysWriteln();
}
// go through the stack frame and extract values
// In the variable value list, we keep the order as follows:
// L0, L1, ..., S0, S1, ....
// adjust local offset and stack offset
// NOTE: donot call BaselineCompilerImpl.getFirstLocalOffset(method)
int bufCMID = Magic.getIntAtOffset(stack, tsFromFPoff.plus(STACKFRAME_METHOD_ID_OFFSET));
CompiledMethod bufCM = CompiledMethods.getCompiledMethod(bufCMID);
int cType = bufCM.getCompilerType();
// restore non-volatile registers that could contain locals; saved by yieldpointfrom methods
// for the moment disabled OPT compilation of yieldpointfrom, because here we assume baselinecompilation !! TODO
TempRegisters registers = new TempRegisters(contextRegisters);
WordArray gprs = registers.gprs;
double[] fprs = registers.fprs;
Object[] objs = registers.objs;
VM.disableGC();
// the threadswitchfrom... method on the other hand can be baseline or opt!
if (cType == CompiledMethod.BASELINE) {
if (VM.VerifyAssertions) {
VM._assert(bufCM.getMethod().hasBaselineSaveLSRegistersAnnotation());
VM._assert(methFPoff.EQ(tsFromFPoff.plus(((ArchBaselineCompiledMethod) bufCM).getFrameSize())));
}
Offset currentRegisterLocation = tsFromFPoff.plus(((ArchBaselineCompiledMethod) bufCM).getFrameSize());
for (int i = LAST_FLOAT_STACK_REGISTER.value(); i >= FIRST_FLOAT_LOCAL_REGISTER.value(); --i) {
currentRegisterLocation = currentRegisterLocation.minus(BYTES_IN_DOUBLE);
long lbits = Magic.getLongAtOffset(stack, currentRegisterLocation);
fprs[i] = Magic.longBitsAsDouble(lbits);
}
for (int i = LAST_FIXED_STACK_REGISTER.value(); i >= FIRST_FIXED_LOCAL_REGISTER.value(); --i) {
currentRegisterLocation = currentRegisterLocation.minus(BYTES_IN_ADDRESS);
Word w = Magic.objectAsAddress(stack).loadWord(currentRegisterLocation);
gprs.set(i, w);
}
} else {
// (cType == CompiledMethod.OPT)
// KV: this code needs to be modified. We need the tsFrom methods to save all NON-VOLATILES in their prolog (as is the case for baseline)
// This is because we don't know at compile time which registers might be in use and wich not by the caller method at runtime!!
// For now we disallow tsFrom methods to be opt compiled when the caller is baseline compiled
// todo: fix this together with the SaveVolatile rewrite
OptCompiledMethod fooOpt = (OptCompiledMethod) bufCM;
// foo definitely not save volatile.
if (VM.VerifyAssertions) {
boolean saveVolatile = fooOpt.isSaveVolatile();
VM._assert(!saveVolatile);
}
Offset offset = tsFromFPoff.plus(fooOpt.getUnsignedNonVolatileOffset());
// recover nonvolatile GPRs
int firstGPR = fooOpt.getFirstNonVolatileGPR();
if (firstGPR != -1) {
for (int i = firstGPR; i <= LAST_NONVOLATILE_GPR.value(); i++) {
Word w = Magic.objectAsAddress(stack).loadWord(offset);
gprs.set(i, w);
offset = offset.plus(BYTES_IN_ADDRESS);
}
}
// recover nonvolatile FPRs
int firstFPR = fooOpt.getFirstNonVolatileFPR();
if (firstFPR != -1) {
for (int i = firstFPR; i <= LAST_NONVOLATILE_FPR.value(); i++) {
long lbits = Magic.getLongAtOffset(stack, offset);
fprs[i] = Magic.longBitsAsDouble(lbits);
offset = offset.plus(BYTES_IN_DOUBLE);
}
}
}
// save objects in registers in register object array
int size = localTypes.length;
for (int i = 0; i < size; i++) {
if ((localTypes[i] == ClassTypeCode) || (localTypes[i] == ArrayTypeCode)) {
short loc = fooCM.getGeneralLocalLocation(i);
if (BaselineCompilerImpl.isRegister(loc)) {
objs[loc] = Magic.addressAsObject(gprs.get(loc).toAddress());
}
}
}
VM.enableGC();
// for locals
getVariableValueFromLocations(stack, methFPoff, localTypes, fooCM, LOCAL, registers, state);
// for stacks
Offset stackOffset = methFPoff.plus(fooCM.getEmptyStackOffset());
getVariableValue(stack, stackOffset, stackTypes, fooCM, STACK, state);
if (VM.TraceOnStackReplacement) {
state.printState();
}
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("BASE executionStateExtractor done ");
}
return state;
}
use of org.jikesrvm.compilers.baseline.ppc.ArchBaselineCompiledMethod in project JikesRVM by JikesRVM.
the class CodeInstaller method install.
/* install the newly compiled instructions. */
public static boolean install(ExecutionState state, CompiledMethod cm) {
RVMThread thread = state.getThread();
byte[] stack = thread.getStack();
Offset fooFPOffset = state.getFPOffset();
// we are going to dynamically generate some code recover
// register values from the stack frame.
int foomid = Magic.getIntAtOffset(stack, fooFPOffset.plus(STACKFRAME_METHOD_ID_OFFSET));
CompiledMethod foo = CompiledMethods.getCompiledMethod(foomid);
int cType = foo.getCompilerType();
Assembler asm = new Assembler(0, VM.TraceOnStackReplacement);
// ///////////////////////////////////
if (cType == CompiledMethod.BASELINE) {
ArchBaselineCompiledMethod bcm = (ArchBaselineCompiledMethod) foo;
int offset = bcm.getFrameSize();
for (int i = bcm.getLastFloatStackRegister(); i >= FIRST_FLOAT_LOCAL_REGISTER.value(); --i) {
offset -= BYTES_IN_DOUBLE;
asm.emitLFD(FPR.lookup(i), offset, FP);
}
for (int i = bcm.getLastFixedStackRegister(); i >= FIRST_FIXED_LOCAL_REGISTER.value(); --i) {
offset -= BYTES_IN_ADDRESS;
asm.emitLAddr(GPR.lookup(i), offset, FP);
}
} else if (cType == CompiledMethod.OPT) {
OptCompiledMethod fooOpt = (OptCompiledMethod) foo;
// foo definitely not save volatile.
boolean saveVolatile = fooOpt.isSaveVolatile();
if (VM.VerifyAssertions) {
VM._assert(!saveVolatile);
}
int offset = fooOpt.getUnsignedNonVolatileOffset();
// recover nonvolatile GPRs
int firstGPR = fooOpt.getFirstNonVolatileGPR();
if (firstGPR != -1) {
for (int i = firstGPR; i <= LAST_NONVOLATILE_GPR.value(); i++) {
asm.emitLAddr(GPR.lookup(i), offset, FP);
offset += BYTES_IN_STACKSLOT;
}
}
// recover nonvolatile FPRs
int firstFPR = fooOpt.getFirstNonVolatileFPR();
if (firstFPR != -1) {
for (int i = firstFPR; i <= LAST_NONVOLATILE_FPR.value(); i++) {
asm.emitLFD(FPR.lookup(i), offset, FP);
offset += BYTES_IN_DOUBLE;
}
}
}
if (VM.VerifyAssertions) {
Object jtocContent = Statics.getSlotContentsAsObject(cm.getOsrJTOCoffset());
VM._assert(jtocContent == cm.getEntryCodeArray());
}
// load address of newInstructions from JTOC
asm.emitLAddrToc(S0, cm.getOsrJTOCoffset());
// mov CTR addr
asm.emitMTCTR(S0);
// lwz FP, 0(FP)
asm.emitLAddr(FP, 0, FP);
// lwz T0, NEXT_INSTR(FP)
asm.emitLAddr(S0, STACKFRAME_RETURN_ADDRESS_OFFSET.toInt(), FP);
// mov LR, addr
asm.emitMTLR(S0);
// bctr
asm.emitBCCTR();
// mark the thread as waiting for on stack replacement.
thread.isWaitingForOsr = true;
thread.bridgeInstructions = asm.getMachineCodes();
thread.fooFPOffset = fooFPOffset;
Address bridgeaddr = Magic.objectAsAddress(thread.bridgeInstructions);
Memory.sync(bridgeaddr, thread.bridgeInstructions.length() << LG_INSTRUCTION_WIDTH);
AOSLogging.logger.logOsrEvent("OSR code installation succeeded");
return true;
}
Aggregations