use of soot.jimple.NumericConstant in project soot by Sable.
the class ConstantFieldValueFinder method valuesForPrimTypeFields.
/*
* This method gives values to all the fields in all the classes if they can be determined statically
* We only care about fields which have primitive types
*/
private void valuesForPrimTypeFields() {
// go through all the classes
Iterator classIt = appClasses.iterator();
while (classIt.hasNext()) {
SootClass s = (SootClass) classIt.next();
debug("\nvaluesforPrimTypeFields", "Processing class " + s.getName());
String declaringClass = s.getName();
Iterator fieldIt = s.getFields().iterator();
while (fieldIt.hasNext()) {
SootField f = (SootField) fieldIt.next();
String fieldName = f.getName();
Type fieldType = f.getType();
if (!(fieldType instanceof PrimType))
continue;
String combined = declaringClass + combiner + fieldName;
classNameFieldNameToSootFieldMapping.put(combined, f);
Object value = null;
// check for constant value tags
if (fieldType instanceof DoubleType && f.hasTag("DoubleConstantValueTag")) {
double val = ((DoubleConstantValueTag) f.getTag("DoubleConstantValueTag")).getDoubleValue();
value = new Double(val);
} else if (fieldType instanceof FloatType && f.hasTag("FloatConstantValueTag")) {
float val = ((FloatConstantValueTag) f.getTag("FloatConstantValueTag")).getFloatValue();
value = new Float(val);
} else if (fieldType instanceof LongType && f.hasTag("LongConstantValueTag")) {
long val = ((LongConstantValueTag) f.getTag("LongConstantValueTag")).getLongValue();
value = new Long(val);
} else if (fieldType instanceof CharType && f.hasTag("IntegerConstantValueTag")) {
int val = ((IntegerConstantValueTag) f.getTag("IntegerConstantValueTag")).getIntValue();
value = new Integer(val);
} else if (fieldType instanceof BooleanType && f.hasTag("IntegerConstantValueTag")) {
int val = ((IntegerConstantValueTag) f.getTag("IntegerConstantValueTag")).getIntValue();
if (val == 0)
value = new Boolean(false);
else
value = new Boolean(true);
} else if ((fieldType instanceof IntType || fieldType instanceof ByteType || fieldType instanceof ShortType) && f.hasTag("IntegerConstantValueTag")) {
int val = ((IntegerConstantValueTag) f.getTag("IntegerConstantValueTag")).getIntValue();
value = new Integer(val);
}
// if there was a constant value tag we have its value now
if (value != null) {
debug("TAGGED value found for field: " + combined);
primTypeFieldValueToUse.put(combined, value);
// continue with next field
continue;
}
// see if the field was never assigned in which case it gets default values
Object temp = fieldToValues.get(combined);
if (temp == null) {
if (fieldType instanceof DoubleType)
value = new Double(0);
else if (fieldType instanceof FloatType)
value = new Float(0);
else if (fieldType instanceof LongType)
value = new Long(0);
else if (fieldType instanceof BooleanType)
value = new Boolean(false);
else if ((fieldType instanceof IntType || fieldType instanceof ByteType || fieldType instanceof ShortType) || fieldType instanceof CharType) {
value = new Integer(0);
} else
throw new DecompilationException("Unknown primitive type...please report to developer");
primTypeFieldValueToUse.put(combined, value);
debug("DEFAULT value for field: " + combined);
// continue with next field
continue;
}
// havent got a tag with value and havent use default since SOME method did define the field atleast once
// there was some value assigned!!!!!!!!!
debug("CHECKING USER ASSIGNED VALUES FOR: " + combined);
ArrayList values = (ArrayList) temp;
// check if they are all constants and that too the same constant
Iterator it = values.iterator();
NumericConstant tempConstant = null;
while (it.hasNext()) {
Value val = (Value) it.next();
if (!(val instanceof NumericConstant)) {
tempConstant = null;
debug("Not numeric constant hence giving up");
break;
}
if (tempConstant == null) {
tempConstant = (NumericConstant) val;
} else {
// check that this value is the same as previous
if (!tempConstant.equals(val)) {
tempConstant = null;
break;
}
}
}
if (tempConstant == null) {
// continue with next field cant do anything about this one
continue;
}
if (tempConstant instanceof LongConstant) {
Long tempVal = new Long(((LongConstant) tempConstant).value);
if (tempVal.compareTo(new Long(0)) == 0)
primTypeFieldValueToUse.put(combined, tempVal);
else
debug("Not assigning the agreed value since that is not the default value for " + combined);
} else if (tempConstant instanceof DoubleConstant) {
Double tempVal = new Double(((DoubleConstant) tempConstant).value);
if (tempVal.compareTo(new Double(0)) == 0)
primTypeFieldValueToUse.put(combined, tempVal);
else
debug("Not assigning the agreed value since that is not the default value for " + combined);
} else if (tempConstant instanceof FloatConstant) {
Float tempVal = new Float(((FloatConstant) tempConstant).value);
if (tempVal.compareTo(new Float(0)) == 0)
primTypeFieldValueToUse.put(combined, tempVal);
else
debug("Not assigning the agreed value since that is not the default value for " + combined);
} else if (tempConstant instanceof IntConstant) {
Integer tempVal = new Integer(((IntConstant) tempConstant).value);
if (tempVal.compareTo(new Integer(0)) == 0) {
SootField tempField = classNameFieldNameToSootFieldMapping.get(combined);
if (tempField.getType() instanceof BooleanType) {
primTypeFieldValueToUse.put(combined, new Boolean(false));
// System.out.println("puttingvalue false for"+combined);
} else {
primTypeFieldValueToUse.put(combined, tempVal);
// System.out.println("puttingvalue 0 for"+combined);
}
} else
debug("Not assigning the agreed value since that is not the default value for " + combined);
} else {
throw new DecompilationException("Un handled Numberic Constant....report to programmer");
}
}
// all fields of the class
}
// all classes
}
use of soot.jimple.NumericConstant in project soot by Sable.
the class SimplifyExpressions method outExprOrRefValueBox.
/* public void inASTBinaryCondition(ASTBinaryCondition cond){
ConditionExpr condExpr = cond.getConditionExpr();
ValueBox op1Box = condExpr.getOp1Box();
ValueBox op2Box = condExpr.getOp2Box();
}
*/
public void outExprOrRefValueBox(ValueBox vb) {
// System.out.println("here"+vb);
Value v = vb.getValue();
if (!(v instanceof BinopExpr)) {
return;
}
BinopExpr binop = (BinopExpr) v;
if (DEBUG)
System.out.println("calling getResult");
NumericConstant constant = getResult(binop);
if (constant == null)
return;
if (DEBUG)
System.out.println("Changin" + vb + " to...." + constant);
vb.setValue(constant);
}
use of soot.jimple.NumericConstant in project soot by Sable.
the class SimplifyExpressions method getResult.
public NumericConstant getResult(BinopExpr binop) {
if (DEBUG)
System.out.println("Binop expr" + binop);
Value leftOp = binop.getOp1();
Value rightOp = binop.getOp2();
int op = 0;
if (binop instanceof AddExpr) {
op = 1;
} else if (binop instanceof SubExpr || binop instanceof DCmpExpr || binop instanceof DCmpgExpr || binop instanceof DCmplExpr) {
op = 2;
} else if (binop instanceof MulExpr) {
op = 3;
}
if (op == 0) {
if (DEBUG) {
System.out.println("not add sub or mult");
System.out.println(binop.getClass().getName());
}
return null;
}
NumericConstant constant = null;
if (leftOp instanceof LongConstant && rightOp instanceof LongConstant) {
if (DEBUG)
System.out.println("long constants!!");
if (op == 1)
constant = ((LongConstant) leftOp).add((LongConstant) rightOp);
else if (op == 2)
constant = ((LongConstant) leftOp).subtract((LongConstant) rightOp);
else if (op == 3)
constant = ((LongConstant) leftOp).multiply((LongConstant) rightOp);
} else if (leftOp instanceof DoubleConstant && rightOp instanceof DoubleConstant) {
if (DEBUG)
System.out.println("double constants!!");
if (op == 1)
constant = ((DoubleConstant) leftOp).add((DoubleConstant) rightOp);
else if (op == 2)
constant = ((DoubleConstant) leftOp).subtract((DoubleConstant) rightOp);
else if (op == 3)
constant = ((DoubleConstant) leftOp).multiply((DoubleConstant) rightOp);
} else if (leftOp instanceof FloatConstant && rightOp instanceof FloatConstant) {
if (DEBUG)
System.out.println("Float constants!!");
if (op == 1)
constant = ((FloatConstant) leftOp).add((FloatConstant) rightOp);
else if (op == 2)
constant = ((FloatConstant) leftOp).subtract((FloatConstant) rightOp);
else if (op == 3)
constant = ((FloatConstant) leftOp).multiply((FloatConstant) rightOp);
} else if (leftOp instanceof IntConstant && rightOp instanceof IntConstant) {
if (DEBUG)
System.out.println("Integer constants!!");
if (op == 1)
constant = ((IntConstant) leftOp).add((IntConstant) rightOp);
else if (op == 2)
constant = ((IntConstant) leftOp).subtract((IntConstant) rightOp);
else if (op == 3)
constant = ((IntConstant) leftOp).multiply((IntConstant) rightOp);
}
return constant;
}
use of soot.jimple.NumericConstant in project soot by Sable.
the class ArithmeticTransformer method internalTransform.
protected void internalTransform(Body b, String phaseName, Map<String, String> options) {
int weight = soot.jbco.Main.getWeight(phaseName, b.getMethod().getSignature());
if (weight == 0) {
return;
}
PatchingChain<Unit> units = b.getUnits();
int localCount = 0;
Chain<Local> locals = b.getLocals();
if (output) {
out.println("*** Performing Arithmetic Transformation on " + b.getMethod().getSignature());
}
Iterator<Unit> it = units.snapshotIterator();
while (it.hasNext()) {
Unit u = it.next();
if (u instanceof AssignStmt) {
AssignStmt as = (AssignStmt) u;
Value v = as.getRightOp();
if (v instanceof MulExpr) {
total++;
MulExpr me = (MulExpr) v;
Value op1 = me.getOp1();
Value op = null, op2 = me.getOp2();
NumericConstant nc = null;
if (op1 instanceof NumericConstant) {
nc = (NumericConstant) op1;
op = op2;
} else if (op2 instanceof NumericConstant) {
nc = (NumericConstant) op2;
op = op1;
}
if (nc != null) {
if (output) {
out.println("Considering: " + as + "\r");
}
Type opType = op.getType();
int max = opType instanceof IntType ? 32 : opType instanceof LongType ? 64 : 0;
if (max != 0) {
Object[] shft_rem = checkNumericValue(nc);
if (shft_rem[0] != null && (Integer) shft_rem[0] < max && Rand.getInt(10) <= weight) {
List<Unit> unitsBuilt = new ArrayList<>();
int rand = Rand.getInt(16);
int shift = (Integer) shft_rem[0];
boolean neg = (Boolean) shft_rem[2];
if (rand % 2 == 0) {
shift += rand * max;
} else {
shift -= rand * max;
}
Expr e;
if (shft_rem[1] != null) {
// if there is an additive floating component
Local tmp2 = null, tmp1 = Jimple.v().newLocal("__tmp_shft_lcl" + localCount++, opType);
locals.add(tmp1);
// shift the integral portion
Unit newU = Jimple.v().newAssignStmt(tmp1, Jimple.v().newShlExpr(op, IntConstant.v(shift)));
unitsBuilt.add(newU);
units.insertBefore(newU, u);
// grab remainder (that not part of the 2^x)
double rem = (Double) shft_rem[1];
if (rem != 1) {
if (rem == ((int) rem) && opType instanceof IntType) {
nc = IntConstant.v((int) rem);
} else if (rem == ((long) rem) && opType instanceof LongType) {
nc = LongConstant.v((long) rem);
} else {
nc = DoubleConstant.v(rem);
}
if (nc instanceof DoubleConstant) {
tmp2 = Jimple.v().newLocal("__tmp_shft_lcl" + localCount++, DoubleType.v());
locals.add(tmp2);
newU = Jimple.v().newAssignStmt(tmp2, Jimple.v().newCastExpr(op, DoubleType.v()));
unitsBuilt.add(newU);
units.insertBefore(newU, u);
newU = Jimple.v().newAssignStmt(tmp2, Jimple.v().newMulExpr(tmp2, nc));
} else {
tmp2 = Jimple.v().newLocal("__tmp_shft_lcl" + localCount++, nc.getType());
locals.add(tmp2);
newU = Jimple.v().newAssignStmt(tmp2, Jimple.v().newMulExpr(op, nc));
}
unitsBuilt.add(newU);
units.insertBefore(newU, u);
}
if (tmp2 == null) {
e = Jimple.v().newAddExpr(tmp1, op);
} else if (tmp2.getType().getClass() != tmp1.getType().getClass()) {
Local tmp3 = Jimple.v().newLocal("__tmp_shft_lcl" + localCount++, tmp2.getType());
locals.add(tmp3);
newU = Jimple.v().newAssignStmt(tmp3, Jimple.v().newCastExpr(tmp1, tmp2.getType()));
unitsBuilt.add(newU);
units.insertBefore(newU, u);
e = Jimple.v().newAddExpr(tmp3, tmp2);
} else {
e = Jimple.v().newAddExpr(tmp1, tmp2);
}
} else {
e = Jimple.v().newShlExpr(op, IntConstant.v(shift));
}
if (e.getType().getClass() != as.getLeftOp().getType().getClass()) {
Local tmp = Jimple.v().newLocal("__tmp_shft_lcl" + localCount++, e.getType());
locals.add(tmp);
Unit newU = Jimple.v().newAssignStmt(tmp, e);
unitsBuilt.add(newU);
units.insertAfter(newU, u);
e = Jimple.v().newCastExpr(tmp, as.getLeftOp().getType());
}
as.setRightOp(e);
unitsBuilt.add(as);
if (neg) {
Unit newU = Jimple.v().newAssignStmt(as.getLeftOp(), Jimple.v().newNegExpr(as.getLeftOp()));
unitsBuilt.add(newU);
units.insertAfter(newU, u);
}
mulPerformed++;
printOutput(unitsBuilt);
}
}
}
} else if (v instanceof DivExpr) {
total++;
DivExpr de = (DivExpr) v;
Value op2 = de.getOp2();
NumericConstant nc;
if (op2 instanceof NumericConstant) {
nc = (NumericConstant) op2;
Type opType = de.getOp1().getType();
int max = opType instanceof IntType ? 32 : opType instanceof LongType ? 64 : 0;
if (max != 0) {
Object[] shft_rem = checkNumericValue(nc);
if (shft_rem[0] != null && (shft_rem[1] == null || (Double) shft_rem[1] == 0) && (Integer) shft_rem[0] < max && Rand.getInt(10) <= weight) {
List<Unit> unitsBuilt = new ArrayList<>();
int rand = Rand.getInt(16);
int shift = (Integer) shft_rem[0];
boolean neg = (Boolean) shft_rem[2];
if (Rand.getInt() % 2 == 0) {
shift += rand * max;
} else {
shift -= rand * max;
}
Expr e = Jimple.v().newShrExpr(de.getOp1(), IntConstant.v(shift));
if (e.getType().getClass() != as.getLeftOp().getType().getClass()) {
Local tmp = Jimple.v().newLocal("__tmp_shft_lcl" + localCount++, e.getType());
locals.add(tmp);
Unit newU = Jimple.v().newAssignStmt(tmp, e);
unitsBuilt.add(newU);
units.insertAfter(newU, u);
e = Jimple.v().newCastExpr(tmp, as.getLeftOp().getType());
}
as.setRightOp(e);
unitsBuilt.add(as);
if (neg) {
Unit newU = Jimple.v().newAssignStmt(as.getLeftOp(), Jimple.v().newNegExpr(as.getLeftOp()));
unitsBuilt.add(newU);
units.insertAfter(newU, u);
}
divPerformed++;
printOutput(unitsBuilt);
}
}
}
}
}
}
}
use of soot.jimple.NumericConstant in project soot by Sable.
the class DexBody method jimplify.
/**
* Return the jimple equivalent of this body.
*
* @param m
* the SootMethod that contains this body
*/
public Body jimplify(Body b, SootMethod m) {
final Jimple jimple = Jimple.v();
final UnknownType unknownType = UnknownType.v();
final NullConstant nullConstant = NullConstant.v();
final Options options = Options.v();
/*
* Timer t_whole_jimplification = new Timer(); Timer t_num = new
* Timer(); Timer t_null = new Timer();
*
* t_whole_jimplification.start();
*/
jBody = (JimpleBody) b;
deferredInstructions = new ArrayList<DeferableInstruction>();
instructionsToRetype = new HashSet<RetypeableInstruction>();
if (IDalvikTyper.ENABLE_DVKTYPER) {
DalvikTyper.v().clear();
}
// process method parameters and generate Jimple locals from Dalvik
// registers
List<Local> paramLocals = new LinkedList<Local>();
if (!isStatic) {
int thisRegister = numRegisters - numParameterRegisters - 1;
// generateLocal(UnknownType.v());
Local thisLocal = jimple.newLocal("$u" + thisRegister, unknownType);
jBody.getLocals().add(thisLocal);
registerLocals[thisRegister] = thisLocal;
JIdentityStmt idStmt = (JIdentityStmt) jimple.newIdentityStmt(thisLocal, jimple.newThisRef(declaringClassType));
add(idStmt);
paramLocals.add(thisLocal);
if (IDalvikTyper.ENABLE_DVKTYPER) {
DalvikTyper.v().setType(idStmt.leftBox, jBody.getMethod().getDeclaringClass().getType(), false);
}
}
{
// index of parameter type
int i = 0;
// index
int parameterRegister = numRegisters - numParameterRegisters;
// register
for (Type t : parameterTypes) {
// may
Local gen = jimple.newLocal("$u" + parameterRegister, unknownType);
// only
// use
// UnknownType
// here
// because
// the
// local
// may
// be
// reused
// with
// a
// different
// type
// later
// (before
// splitting)
jBody.getLocals().add(gen);
registerLocals[parameterRegister] = gen;
JIdentityStmt idStmt = (JIdentityStmt) jimple.newIdentityStmt(gen, jimple.newParameterRef(t, i++));
add(idStmt);
paramLocals.add(gen);
if (IDalvikTyper.ENABLE_DVKTYPER) {
DalvikTyper.v().setType(idStmt.leftBox, t, false);
}
// used later in the Dalvik bytecode
if (t instanceof LongType || t instanceof DoubleType) {
parameterRegister++;
// may
Local g = jimple.newLocal("$u" + parameterRegister, unknownType);
// only
// use
// UnknownType
// here
// because
// the
// local
// may
// be
// reused
// with
// a
// different
// type
// later
// (before
// splitting)
jBody.getLocals().add(g);
registerLocals[parameterRegister] = g;
}
parameterRegister++;
}
}
for (int i = 0; i < (numRegisters - numParameterRegisters - (isStatic ? 0 : 1)); i++) {
registerLocals[i] = jimple.newLocal("$u" + i, unknownType);
jBody.getLocals().add(registerLocals[i]);
}
// add local to store intermediate results
storeResultLocal = jimple.newLocal("$u-1", unknownType);
jBody.getLocals().add(storeResultLocal);
// process bytecode instructions
final boolean isOdex = dexFile instanceof DexBackedDexFile ? ((DexBackedDexFile) dexFile).isOdexFile() : false;
ClassPath cp = null;
if (isOdex) {
String[] sootClasspath = options.soot_classpath().split(File.pathSeparator);
List<String> classpathList = new ArrayList<String>();
for (String str : sootClasspath) classpathList.add(str);
try {
ClassPathResolver resolver = new ClassPathResolver(classpathList, classpathList, classpathList, dexFile);
cp = new ClassPath(resolver.getResolvedClassProviders().toArray(new ClassProvider[0]));
} catch (IOException e) {
throw new RuntimeException(e);
}
}
int prevLineNumber = -1;
for (DexlibAbstractInstruction instruction : instructions) {
if (isOdex && instruction instanceof OdexInstruction)
((OdexInstruction) instruction).deOdex(dexFile, method, cp);
if (dangling != null) {
dangling.finalize(this, instruction);
dangling = null;
}
instruction.jimplify(this);
if (instruction.getLineNumber() > 0)
prevLineNumber = instruction.getLineNumber();
else {
instruction.setLineNumber(prevLineNumber);
}
}
for (DeferableInstruction instruction : deferredInstructions) {
instruction.deferredJimplify(this);
}
if (tries != null)
addTraps();
int prevLn = -1;
final boolean keepLineNumber = options.keep_line_number();
for (DexlibAbstractInstruction instruction : instructions) {
Unit unit = instruction.getUnit();
int lineNumber = unit.getJavaSourceStartLineNumber();
if (keepLineNumber && lineNumber < 0) {
if (prevLn >= 0) {
unit.addTag(new LineNumberTag(prevLn));
unit.addTag(new SourceLineNumberTag(prevLn));
}
} else {
prevLn = lineNumber;
}
}
// At this point Jimple code is generated
// Cleaning...
instructions = null;
// registerLocals = null;
// storeResultLocal = null;
instructionAtAddress.clear();
// localGenerator = null;
deferredInstructions = null;
// instructionsToRetype = null;
dangling = null;
tries = null;
/*
* We eliminate dead code. Dead code has been shown to occur under the
* following circumstances.
*
* 0006ec: 0d00 |00a2: move-exception v0 ... 0006f2: 0d00 |00a5:
* move-exception v0 ... 0x0041 - 0x008a Ljava/lang/Throwable; -> 0x00a5
* <any> -> 0x00a2
*
* Here there are two traps both over the same region. But the same
* always fires, hence rendering the code at a2 unreachable. Dead code
* yields problems during local splitting because locals within dead
* code will not be split. Hence we remove all dead code here.
*/
// Fix traps that do not catch exceptions
DexTrapStackFixer.v().transform(jBody);
// Sort out jump chains
DexJumpChainShortener.v().transform(jBody);
// Make sure that we don't have any overlapping uses due to returns
DexReturnInliner.v().transform(jBody);
// Shortcut: Reduce array initializations
DexArrayInitReducer.v().transform(jBody);
// split first to find undefined uses
getLocalSplitter().transform(jBody);
// Remove dead code and the corresponding locals before assigning types
getUnreachableCodeEliminator().transform(jBody);
DeadAssignmentEliminator.v().transform(jBody);
UnusedLocalEliminator.v().transform(jBody);
for (RetypeableInstruction i : instructionsToRetype) i.retype(jBody);
if (IDalvikTyper.ENABLE_DVKTYPER) {
DexReturnValuePropagator.v().transform(jBody);
getCopyPopagator().transform(jBody);
DexNullThrowTransformer.v().transform(jBody);
DalvikTyper.v().typeUntypedConstrantInDiv(jBody);
DeadAssignmentEliminator.v().transform(jBody);
UnusedLocalEliminator.v().transform(jBody);
DalvikTyper.v().assignType(jBody);
// jBody.validate();
jBody.validateUses();
jBody.validateValueBoxes();
// jBody.checkInit();
// Validate.validateArrays(jBody);
// jBody.checkTypes();
// jBody.checkLocals();
} else {
// t_num.start();
DexNumTransformer.v().transform(jBody);
// t_num.end();
DexReturnValuePropagator.v().transform(jBody);
getCopyPopagator().transform(jBody);
DexNullThrowTransformer.v().transform(jBody);
// t_null.start();
DexNullTransformer.v().transform(jBody);
// t_null.end();
DexIfTransformer.v().transform(jBody);
DeadAssignmentEliminator.v().transform(jBody);
UnusedLocalEliminator.v().transform(jBody);
// DexRefsChecker.v().transform(jBody);
DexNullArrayRefTransformer.v().transform(jBody);
}
if (IDalvikTyper.ENABLE_DVKTYPER) {
for (Local l : jBody.getLocals()) {
l.setType(unknownType);
}
}
// Remove "instanceof" checks on the null constant
DexNullInstanceofTransformer.v().transform(jBody);
TypeAssigner.v().transform(jBody);
final RefType objectType = RefType.v("java.lang.Object");
if (IDalvikTyper.ENABLE_DVKTYPER) {
for (Unit u : jBody.getUnits()) {
if (u instanceof IfStmt) {
ConditionExpr expr = (ConditionExpr) ((IfStmt) u).getCondition();
if (((expr instanceof EqExpr) || (expr instanceof NeExpr))) {
Value op1 = expr.getOp1();
Value op2 = expr.getOp2();
if (op1 instanceof Constant && op2 instanceof Local) {
Local l = (Local) op2;
Type ltype = l.getType();
if (ltype instanceof PrimType)
continue;
if (// by default
!(op1 instanceof IntConstant))
// in Dalvik
continue;
IntConstant icst = (IntConstant) op1;
int val = icst.value;
if (val != 0)
continue;
expr.setOp1(nullConstant);
} else if (op1 instanceof Local && op2 instanceof Constant) {
Local l = (Local) op1;
Type ltype = l.getType();
if (ltype instanceof PrimType)
continue;
if (// by default
!(op2 instanceof IntConstant))
// in Dalvik
continue;
IntConstant icst = (IntConstant) op2;
int val = icst.value;
if (val != 0)
continue;
expr.setOp2(nullConstant);
} else if (op1 instanceof Local && op2 instanceof Local) {
// nothing to do
} else if (op1 instanceof Constant && op2 instanceof Constant) {
if (op1 instanceof NullConstant && op2 instanceof NumericConstant) {
IntConstant nc = (IntConstant) op2;
if (nc.value != 0)
throw new RuntimeException("expected value 0 for int constant. Got " + expr);
expr.setOp2(NullConstant.v());
} else if (op2 instanceof NullConstant && op1 instanceof NumericConstant) {
IntConstant nc = (IntConstant) op1;
if (nc.value != 0)
throw new RuntimeException("expected value 0 for int constant. Got " + expr);
expr.setOp1(nullConstant);
}
} else {
throw new RuntimeException("error: do not handle if: " + u);
}
}
}
}
// For null_type locals: replace their use by NullConstant()
List<ValueBox> uses = jBody.getUseBoxes();
// List<ValueBox> defs = jBody.getDefBoxes();
List<ValueBox> toNullConstantify = new ArrayList<ValueBox>();
List<Local> toRemove = new ArrayList<Local>();
for (Local l : jBody.getLocals()) {
if (l.getType() instanceof NullType) {
toRemove.add(l);
for (ValueBox vb : uses) {
Value v = vb.getValue();
if (v == l)
toNullConstantify.add(vb);
}
}
}
for (ValueBox vb : toNullConstantify) {
System.out.println("replace valuebox '" + vb + " with null constant");
vb.setValue(nullConstant);
}
for (Local l : toRemove) {
System.out.println("removing null_type local " + l);
l.setType(objectType);
}
}
// We pack locals that are not used in overlapping regions. This may
// again lead to unused locals which we have to remove.
LocalPacker.v().transform(jBody);
UnusedLocalEliminator.v().transform(jBody);
LocalNameStandardizer.v().transform(jBody);
// on the fly.
if (options.wrong_staticness() == Options.wrong_staticness_fix) {
FieldStaticnessCorrector.v().transform(jBody);
MethodStaticnessCorrector.v().transform(jBody);
}
// Inline PackManager.v().getPack("jb").apply(jBody);
// Keep only transformations that have not been done
// at this point.
TrapTightener.v().transform(jBody);
TrapMinimizer.v().transform(jBody);
// LocalSplitter.v().transform(jBody);
Aggregator.v().transform(jBody);
// UnusedLocalEliminator.v().transform(jBody);
// TypeAssigner.v().transform(jBody);
// LocalPacker.v().transform(jBody);
// LocalNameStandardizer.v().transform(jBody);
// Remove if (null == null) goto x else <madness>. We can only do this
// after we have run the constant propagation as we might not be able
// to statically decide the conditions earlier.
ConditionalBranchFolder.v().transform(jBody);
// Remove unnecessary typecasts
ConstantCastEliminator.v().transform(jBody);
IdentityCastEliminator.v().transform(jBody);
// Remove unnecessary logic operations
IdentityOperationEliminator.v().transform(jBody);
// We need to run this transformer since the conditional branch folder
// might have rendered some code unreachable (well, it was unreachable
// before as well, but we didn't know).
UnreachableCodeEliminator.v().transform(jBody);
// Not sure whether we need this even though we do it earlier on as
// the earlier pass does not have type information
// CopyPropagator.v().transform(jBody);
// we might have gotten new dead assignments and unused locals through
// copy propagation and unreachable code elimination, so we have to do
// this again
DeadAssignmentEliminator.v().transform(jBody);
UnusedLocalEliminator.v().transform(jBody);
NopEliminator.v().transform(jBody);
// Remove unnecessary chains of return statements
DexReturnPacker.v().transform(jBody);
for (Unit u : jBody.getUnits()) {
if (u instanceof AssignStmt) {
AssignStmt ass = (AssignStmt) u;
if (ass.getRightOp() instanceof CastExpr) {
CastExpr c = (CastExpr) ass.getRightOp();
if (c.getType() instanceof NullType) {
ass.setRightOp(nullConstant);
}
}
}
if (u instanceof DefinitionStmt) {
DefinitionStmt def = (DefinitionStmt) u;
// we must manually fix the hierarchy
if (def.getLeftOp() instanceof Local && def.getRightOp() instanceof CaughtExceptionRef) {
Type t = def.getLeftOp().getType();
if (t instanceof RefType) {
RefType rt = (RefType) t;
if (rt.getSootClass().isPhantom() && !rt.getSootClass().hasSuperclass() && !rt.getSootClass().getName().equals("java.lang.Throwable"))
rt.getSootClass().setSuperclass(Scene.v().getSootClass("java.lang.Throwable"));
}
}
}
}
//
for (Local l : jBody.getLocals()) {
Type t = l.getType();
if (t instanceof NullType) {
l.setType(objectType);
}
}
return jBody;
}
Aggregations