use of spacegraph.space2d.phys.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint in project narchy by automenta.
the class PositionSolverManifold method initializeVelocityConstraints.
public final void initializeVelocityConstraints() {
// Warm start.
for (int i = 0; i < m_count; ++i) {
ContactVelocityConstraint vc = m_velocityConstraints[i];
ContactPositionConstraint pc = m_positionConstraints[i];
float radiusA = pc.radiusA;
float radiusB = pc.radiusB;
Manifold manifold = m_contacts[vc.contactIndex].getManifold();
int indexA = vc.indexA;
int indexB = vc.indexB;
float mA = vc.invMassA;
float mB = vc.invMassB;
float iA = vc.invIA;
float iB = vc.invIB;
Tuple2f localCenterA = pc.localCenterA;
Tuple2f localCenterB = pc.localCenterB;
Tuple2f cA = m_positions[indexA];
float aA = m_positions[indexA].a;
Tuple2f vA = m_velocities[indexA];
float wA = m_velocities[indexA].w;
Tuple2f cB = m_positions[indexB];
float aB = m_positions[indexB].a;
Tuple2f vB = m_velocities[indexB];
float wB = m_velocities[indexB].w;
assert (manifold.pointCount > 0);
final Rot xfAq = xfA;
final Rot xfBq = xfB;
xfAq.set(aA);
xfBq.set(aB);
xfA.pos.x = cA.x - (xfAq.c * localCenterA.x - xfAq.s * localCenterA.y);
xfA.pos.y = cA.y - (xfAq.s * localCenterA.x + xfAq.c * localCenterA.y);
xfB.pos.x = cB.x - (xfBq.c * localCenterB.x - xfBq.s * localCenterB.y);
xfB.pos.y = cB.y - (xfBq.s * localCenterB.x + xfBq.c * localCenterB.y);
worldManifold.initialize(manifold, xfA, radiusA, xfB, radiusB);
final Tuple2f vcnormal = vc.normal;
vcnormal.x = worldManifold.normal.x;
vcnormal.y = worldManifold.normal.y;
int pointCount = vc.pointCount;
for (int j = 0; j < pointCount; ++j) {
VelocityConstraintPoint vcp = vc.points[j];
Tuple2f wmPj = worldManifold.points[j];
final Tuple2f vcprA = vcp.rA;
final Tuple2f vcprB = vcp.rB;
vcprA.x = wmPj.x - cA.x;
vcprA.y = wmPj.y - cA.y;
vcprB.x = wmPj.x - cB.x;
vcprB.y = wmPj.y - cB.y;
float rnA = vcprA.x * vcnormal.y - vcprA.y * vcnormal.x;
float rnB = vcprB.x * vcnormal.y - vcprB.y * vcnormal.x;
float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;
float tangentx = 1.0f * vcnormal.y;
float tangenty = -1.0f * vcnormal.x;
float rtA = vcprA.x * tangenty - vcprA.y * tangentx;
float rtB = vcprB.x * tangenty - vcprB.y * tangentx;
float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;
vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;
// Setup a velocity bias for restitution.
vcp.velocityBias = 0.0f;
float tempx = vB.x + -wB * vcprB.y - vA.x - (-wA * vcprA.y);
float tempy = vB.y + wB * vcprB.x - vA.y - (wA * vcprA.x);
float vRel = vcnormal.x * tempx + vcnormal.y * tempy;
if (vRel < -Settings.velocityThreshold) {
vcp.velocityBias = -vc.restitution * vRel;
}
}
// If we have two points, then prepare the block solver.
if (vc.pointCount == 2) {
VelocityConstraintPoint vcp1 = vc.points[0];
VelocityConstraintPoint vcp2 = vc.points[1];
float rn1A = vcp1.rA.x * vcnormal.y - vcp1.rA.y * vcnormal.x;
float rn1B = vcp1.rB.x * vcnormal.y - vcp1.rB.y * vcnormal.x;
float rn2A = vcp2.rA.x * vcnormal.y - vcp2.rA.y * vcnormal.x;
float rn2B = vcp2.rB.x * vcnormal.y - vcp2.rB.y * vcnormal.x;
float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) {
// K is safe to invert.
vc.K.ex.x = k11;
vc.K.ex.y = k12;
vc.K.ey.x = k12;
vc.K.ey.y = k22;
vc.K.invertToOut(vc.normalMass);
} else {
// The constraints are redundant, just use one.
// TODO_ERIN use deepest?
vc.pointCount = 1;
}
}
}
}
use of spacegraph.space2d.phys.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint in project narchy by automenta.
the class PositionSolverManifold method warmStart.
public void warmStart() {
// Warm start.
for (int i = 0; i < m_count; ++i) {
final ContactVelocityConstraint vc = m_velocityConstraints[i];
int indexA = vc.indexA;
int indexB = vc.indexB;
float mA = vc.invMassA;
float iA = vc.invIA;
float mB = vc.invMassB;
float iB = vc.invIB;
int pointCount = vc.pointCount;
Tuple2f vA = m_velocities[indexA];
float wA = m_velocities[indexA].w;
Tuple2f vB = m_velocities[indexB];
float wB = m_velocities[indexB].w;
Tuple2f normal = vc.normal;
float tangentx = 1.0f * normal.y;
float tangenty = -1.0f * normal.x;
for (int j = 0; j < pointCount; ++j) {
VelocityConstraintPoint vcp = vc.points[j];
float Px = tangentx * vcp.tangentImpulse + normal.x * vcp.normalImpulse;
float Py = tangenty * vcp.tangentImpulse + normal.y * vcp.normalImpulse;
wA -= iA * (vcp.rA.x * Py - vcp.rA.y * Px);
vA.x -= Px * mA;
vA.y -= Py * mA;
wB += iB * (vcp.rB.x * Py - vcp.rB.y * Px);
vB.x += Px * mB;
vB.y += Py * mB;
}
m_velocities[indexA].w = wA;
m_velocities[indexB].w = wB;
}
}
use of spacegraph.space2d.phys.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint in project narchy by automenta.
the class PositionSolverManifold method init.
public final void init(ContactSolverDef def) {
// System.out.println("Initializing contact solver");
m_step = def.step;
m_count = def.count;
if (m_positionConstraints.length < m_count) {
ContactPositionConstraint[] old = m_positionConstraints;
m_positionConstraints = new ContactPositionConstraint[MathUtils.max(old.length * 2, m_count)];
System.arraycopy(old, 0, m_positionConstraints, 0, old.length);
for (int i = old.length; i < m_positionConstraints.length; i++) {
m_positionConstraints[i] = new ContactPositionConstraint();
}
}
if (m_velocityConstraints.length < m_count) {
ContactVelocityConstraint[] old = m_velocityConstraints;
m_velocityConstraints = new ContactVelocityConstraint[MathUtils.max(old.length * 2, m_count)];
System.arraycopy(old, 0, m_velocityConstraints, 0, old.length);
for (int i = old.length; i < m_velocityConstraints.length; i++) {
m_velocityConstraints[i] = new ContactVelocityConstraint();
}
}
m_positions = def.positions;
m_velocities = def.velocities;
m_contacts = def.contacts;
for (int i = 0; i < m_count; ++i) {
// System.out.println("contacts: " + m_count);
final Contact contact = m_contacts[i];
final Fixture fixtureA = contact.aFixture;
final Fixture fixtureB = contact.bFixture;
final Shape shapeA = fixtureA.shape();
final Shape shapeB = fixtureB.shape();
final float radiusA = shapeA.radius;
final float radiusB = shapeB.radius;
final Body2D bodyA = fixtureA.getBody();
final Body2D bodyB = fixtureB.getBody();
final Manifold manifold = contact.getManifold();
int pointCount = manifold.pointCount;
assert (pointCount > 0);
ContactVelocityConstraint vc = m_velocityConstraints[i];
vc.friction = contact.m_friction;
vc.restitution = contact.m_restitution;
vc.tangentSpeed = contact.m_tangentSpeed;
vc.indexA = bodyA.island;
vc.indexB = bodyB.island;
vc.invMassA = bodyA.m_invMass;
vc.invMassB = bodyB.m_invMass;
vc.invIA = bodyA.m_invI;
vc.invIB = bodyB.m_invI;
vc.contactIndex = i;
vc.pointCount = pointCount;
vc.K.setZero();
vc.normalMass.setZero();
ContactPositionConstraint pc = m_positionConstraints[i];
pc.indexA = bodyA.island;
pc.indexB = bodyB.island;
pc.invMassA = bodyA.m_invMass;
pc.invMassB = bodyB.m_invMass;
pc.localCenterA.set(bodyA.sweep.localCenter);
pc.localCenterB.set(bodyB.sweep.localCenter);
pc.invIA = bodyA.m_invI;
pc.invIB = bodyB.m_invI;
pc.localNormal.set(manifold.localNormal);
pc.localPoint.set(manifold.localPoint);
pc.pointCount = pointCount;
pc.radiusA = radiusA;
pc.radiusB = radiusB;
pc.type = manifold.type;
// System.out.println("contact point count: " + pointCount);
for (int j = 0; j < pointCount; j++) {
ManifoldPoint cp = manifold.points[j];
VelocityConstraintPoint vcp = vc.points[j];
if (m_step.warmStarting) {
// assert(cp.normalImpulse == 0);
// System.out.println("contact normal impulse: " + cp.normalImpulse);
vcp.normalImpulse = m_step.dtRatio * cp.normalImpulse;
vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
} else {
vcp.normalImpulse = 0;
vcp.tangentImpulse = 0;
}
vcp.rA.setZero();
vcp.rB.setZero();
vcp.normalMass = 0;
vcp.tangentMass = 0;
vcp.velocityBias = 0;
pc.localPoints[j].x = cp.localPoint.x;
pc.localPoints[j].y = cp.localPoint.y;
}
}
}
use of spacegraph.space2d.phys.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint in project narchy by automenta.
the class PositionSolverManifold method solveVelocityConstraints.
public final void solveVelocityConstraints() {
for (int i = 0; i < m_count; ++i) {
final ContactVelocityConstraint vc = m_velocityConstraints[i];
int indexA = vc.indexA;
int indexB = vc.indexB;
float mA = vc.invMassA;
float mB = vc.invMassB;
float iA = vc.invIA;
float iB = vc.invIB;
int pointCount = vc.pointCount;
Tuple2f vA = m_velocities[indexA];
float wA = m_velocities[indexA].w;
Tuple2f vB = m_velocities[indexB];
float wB = m_velocities[indexB].w;
Tuple2f normal = vc.normal;
final float normalx = normal.x;
final float normaly = normal.y;
float tangentx = 1.0f * vc.normal.y;
float tangenty = -1.0f * vc.normal.x;
final float friction = vc.friction;
assert (pointCount == 1 || pointCount == 2);
// Solve tangent constraints
for (int j = 0; j < pointCount; ++j) {
final VelocityConstraintPoint vcp = vc.points[j];
final Tuple2f a = vcp.rA;
float dvx = -wB * vcp.rB.y + vB.x - vA.x + wA * a.y;
float dvy = wB * vcp.rB.x + vB.y - vA.y - wA * a.x;
// Compute tangent force
final float vt = dvx * tangentx + dvy * tangenty - vc.tangentSpeed;
float lambda = vcp.tangentMass * (-vt);
// Clamp the accumulated force
final float maxFriction = friction * vcp.normalImpulse;
final float newImpulse = MathUtils.clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction);
lambda = newImpulse - vcp.tangentImpulse;
vcp.tangentImpulse = newImpulse;
// Apply contact impulse
// Vec2 P = lambda * tangent;
final float Px = tangentx * lambda;
final float Py = tangenty * lambda;
// vA -= invMassA * P;
vA.x -= Px * mA;
vA.y -= Py * mA;
wA -= iA * (vcp.rA.x * Py - vcp.rA.y * Px);
// vB += invMassB * P;
vB.x += Px * mB;
vB.y += Py * mB;
wB += iB * (vcp.rB.x * Py - vcp.rB.y * Px);
}
// Solve normal constraints
if (vc.pointCount == 1) {
final VelocityConstraintPoint vcp = vc.points[0];
// Relative velocity at contact
// Vec2 dv = vB + Cross(wB, vcp.rB) - vA - Cross(wA, vcp.rA);
float dvx = -wB * vcp.rB.y + vB.x - vA.x + wA * vcp.rA.y;
float dvy = wB * vcp.rB.x + vB.y - vA.y - wA * vcp.rA.x;
// Compute normal impulse
final float vn = dvx * normalx + dvy * normaly;
float lambda = -vcp.normalMass * (vn - vcp.velocityBias);
// Clamp the accumulated impulse
float a = vcp.normalImpulse + lambda;
final float newImpulse = (a > 0.0f ? a : 0.0f);
lambda = newImpulse - vcp.normalImpulse;
vcp.normalImpulse = newImpulse;
// Apply contact impulse
float Px = normalx * lambda;
float Py = normaly * lambda;
// vA -= invMassA * P;
vA.x -= Px * mA;
vA.y -= Py * mA;
wA -= iA * (vcp.rA.x * Py - vcp.rA.y * Px);
// vB += invMassB * P;
vB.x += Px * mB;
vB.y += Py * mB;
wB += iB * (vcp.rB.x * Py - vcp.rB.y * Px);
} else {
// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on
// Box2D_Lite).
// Build the mini LCP for this contact patch
//
// vn = A * x + b, vn >= 0, , vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
//
// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
// b = vn_0 - velocityBias
//
// The system is solved using the "Total enumeration method" (s. Murty). The complementary
// constraint vn_i * x_i
// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D
// contact problem the cases
// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be
// tested. The first valid
// solution that satisfies the problem is chosen.
//
// In order to account of the accumulated impulse 'a' (because of the iterative nature of
// the solver which only requires
// that the accumulated impulse is clamped and not the incremental impulse) we change the
// impulse variable (x_i).
//
// Substitute:
//
// x = a + d
//
// a := old total impulse
// x := new total impulse
// d := incremental impulse
//
// For the current iteration we extend the formula for the incremental impulse
// to compute the new total impulse:
//
// vn = A * d + b
// = A * (x - a) + b
// = A * x + b - A * a
// = A * x + b'
// b' = b - A * a;
final VelocityConstraintPoint cp1 = vc.points[0];
final VelocityConstraintPoint cp2 = vc.points[1];
final Tuple2f cp1rA = cp1.rA;
final Tuple2f cp1rB = cp1.rB;
final Tuple2f cp2rA = cp2.rA;
final Tuple2f cp2rB = cp2.rB;
float ax = cp1.normalImpulse;
float ay = cp2.normalImpulse;
assert (ax >= 0.0f && ay >= 0.0f);
// Relative velocity at contact
// Vec2 dv1 = vB + Cross(wB, cp1.rB) - vA - Cross(wA, cp1.rA);
float dv1x = -wB * cp1rB.y + vB.x - vA.x + wA * cp1rA.y;
float dv1y = wB * cp1rB.x + vB.y - vA.y - wA * cp1rA.x;
// Vec2 dv2 = vB + Cross(wB, cp2.rB) - vA - Cross(wA, cp2.rA);
float dv2x = -wB * cp2rB.y + vB.x - vA.x + wA * cp2rA.y;
float dv2y = wB * cp2rB.x + vB.y - vA.y - wA * cp2rA.x;
// Compute normal velocity
float vn1 = dv1x * normalx + dv1y * normaly;
float vn2 = dv2x * normalx + dv2y * normaly;
float bx = vn1 - cp1.velocityBias;
float by = vn2 - cp2.velocityBias;
// Compute b'
Mat22 R = vc.K;
bx -= R.ex.x * ax + R.ey.x * ay;
by -= R.ex.y * ax + R.ey.y * ay;
// B2_NOT_USED(k_errorTol);
for (; ; ) {
//
// Case 1: vn = 0
//
// 0 = A * x' + b'
//
// Solve for x':
//
// x' = - inv(A) * b'
//
// Vec2 x = - Mul(c.normalMass, b);
Mat22 R1 = vc.normalMass;
float xx = R1.ex.x * bx + R1.ey.x * by;
float xy = R1.ex.y * bx + R1.ey.y * by;
xx *= -1;
xy *= -1;
if (xx >= 0.0f && xy >= 0.0f) {
// Get the incremental impulse
// Vec2 d = x - a;
float dx = xx - ax;
float dy = xy - ay;
// Apply incremental impulse
// Vec2 P1 = d.x * normal;
// Vec2 P2 = d.y * normal;
float P1x = dx * normalx;
float P1y = dx * normaly;
float P2x = dy * normalx;
float P2y = dy * normaly;
/*
* vA -= invMassA * (P1 + P2); wA -= invIA * (Cross(cp1.rA, P1) + Cross(cp2.rA, P2));
*
* vB += invMassB * (P1 + P2); wB += invIB * (Cross(cp1.rB, P1) + Cross(cp2.rB, P2));
*/
vA.x -= mA * (P1x + P2x);
vA.y -= mA * (P1y + P2y);
vB.x += mB * (P1x + P2x);
vB.y += mB * (P1y + P2y);
wA -= iA * (cp1rA.x * P1y - cp1rA.y * P1x + (cp2rA.x * P2y - cp2rA.y * P2x));
wB += iB * (cp1rB.x * P1y - cp1rB.y * P1x + (cp2rB.x * P2y - cp2rB.y * P2x));
// Accumulate
cp1.normalImpulse = xx;
cp2.normalImpulse = xy;
/*
* #if B2_DEBUG_SOLVER == 1 // Postconditions dv1 = vB + Cross(wB, cp1.rB) - vA -
* Cross(wA, cp1.rA); dv2 = vB + Cross(wB, cp2.rB) - vA - Cross(wA, cp2.rA);
*
* // Compute normal velocity vn1 = Dot(dv1, normal); vn2 = Dot(dv2, normal);
*
* assert(Abs(vn1 - cp1.velocityBias) < k_errorTol); assert(Abs(vn2 - cp2.velocityBias)
* < k_errorTol); #endif
*/
if (DEBUG_SOLVER) {
// Postconditions
Tuple2f dv1 = vB.add(Tuple2f.cross(wB, cp1rB).subbed(vA).subbed(Tuple2f.cross(wA, cp1rA)));
Tuple2f dv2 = vB.add(Tuple2f.cross(wB, cp2rB).subbed(vA).subbed(Tuple2f.cross(wA, cp2rA)));
// Compute normal velocity
vn1 = Tuple2f.dot(dv1, normal);
vn2 = Tuple2f.dot(dv2, normal);
assert (Math.abs(vn1 - cp1.velocityBias) < k_errorTol);
assert (Math.abs(vn2 - cp2.velocityBias) < k_errorTol);
}
break;
}
//
// Case 2: vn1 = 0 and x2 = 0
//
// 0 = a11 * x1' + a12 * 0 + b1'
// vn2 = a21 * x1' + a22 * 0 + '
//
xx = -cp1.normalMass * bx;
xy = 0.0f;
vn1 = 0.0f;
vn2 = vc.K.ex.y * xx + by;
if (xx >= 0.0f && vn2 >= 0.0f) {
// Get the incremental impulse
float dx = xx - ax;
float dy = xy - ay;
// Apply incremental impulse
// Vec2 P1 = d.x * normal;
// Vec2 P2 = d.y * normal;
float P1x = normalx * dx;
float P1y = normaly * dx;
float P2x = normalx * dy;
float P2y = normaly * dy;
/*
* Vec2 P1 = d.x * normal; Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -=
* invIA * (Cross(cp1.rA, P1) + Cross(cp2.rA, P2));
*
* vB += invMassB * (P1 + P2); wB += invIB * (Cross(cp1.rB, P1) + Cross(cp2.rB, P2));
*/
vA.x -= mA * (P1x + P2x);
vA.y -= mA * (P1y + P2y);
vB.x += mB * (P1x + P2x);
vB.y += mB * (P1y + P2y);
wA -= iA * (cp1rA.x * P1y - cp1rA.y * P1x + (cp2rA.x * P2y - cp2rA.y * P2x));
wB += iB * (cp1rB.x * P1y - cp1rB.y * P1x + (cp2rB.x * P2y - cp2rB.y * P2x));
// Accumulate
cp1.normalImpulse = xx;
cp2.normalImpulse = xy;
/*
* #if B2_DEBUG_SOLVER == 1 // Postconditions dv1 = vB + Cross(wB, cp1.rB) - vA -
* Cross(wA, cp1.rA);
*
* // Compute normal velocity vn1 = Dot(dv1, normal);
*
* assert(Abs(vn1 - cp1.velocityBias) < k_errorTol); #endif
*/
if (DEBUG_SOLVER) {
// Postconditions
Tuple2f dv1 = vB.add(Tuple2f.cross(wB, cp1rB).subbed(vA).subbed(Tuple2f.cross(wA, cp1rA)));
// Compute normal velocity
vn1 = Tuple2f.dot(dv1, normal);
assert (Math.abs(vn1 - cp1.velocityBias) < k_errorTol);
}
break;
}
//
// Case 3: wB = 0 and x1 = 0
//
// vn1 = a11 * 0 + a12 * x2' + b1'
// 0 = a21 * 0 + a22 * x2' + '
//
xx = 0.0f;
xy = -cp2.normalMass * by;
vn1 = vc.K.ey.x * xy + bx;
vn2 = 0.0f;
if (xy >= 0.0f && vn1 >= 0.0f) {
// Resubstitute for the incremental impulse
float dx = xx - ax;
float dy = xy - ay;
// Apply incremental impulse
/*
* Vec2 P1 = d.x * normal; Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -=
* invIA * (Cross(cp1.rA, P1) + Cross(cp2.rA, P2));
*
* vB += invMassB * (P1 + P2); wB += invIB * (Cross(cp1.rB, P1) + Cross(cp2.rB, P2));
*/
float P1x = normalx * dx;
float P1y = normaly * dx;
float P2x = normalx * dy;
float P2y = normaly * dy;
vA.x -= mA * (P1x + P2x);
vA.y -= mA * (P1y + P2y);
vB.x += mB * (P1x + P2x);
vB.y += mB * (P1y + P2y);
wA -= iA * (cp1rA.x * P1y - cp1rA.y * P1x + (cp2rA.x * P2y - cp2rA.y * P2x));
wB += iB * (cp1rB.x * P1y - cp1rB.y * P1x + (cp2rB.x * P2y - cp2rB.y * P2x));
// Accumulate
cp1.normalImpulse = xx;
cp2.normalImpulse = xy;
/*
* #if B2_DEBUG_SOLVER == 1 // Postconditions dv2 = vB + Cross(wB, cp2.rB) - vA -
* Cross(wA, cp2.rA);
*
* // Compute normal velocity vn2 = Dot(dv2, normal);
*
* assert(Abs(vn2 - cp2.velocityBias) < k_errorTol); #endif
*/
if (DEBUG_SOLVER) {
// Postconditions
Tuple2f dv2 = vB.add(Tuple2f.cross(wB, cp2rB).subbed(vA).subbed(Tuple2f.cross(wA, cp2rA)));
// Compute normal velocity
vn2 = Tuple2f.dot(dv2, normal);
assert (Math.abs(vn2 - cp2.velocityBias) < k_errorTol);
}
break;
}
//
// Case 4: x1 = 0 and x2 = 0
//
// vn1 = b1
// vn2 = ;
xx = 0.0f;
xy = 0.0f;
vn1 = bx;
vn2 = by;
if (vn1 >= 0.0f && vn2 >= 0.0f) {
// Resubstitute for the incremental impulse
float dx = xx - ax;
float dy = xy - ay;
// Apply incremental impulse
/*
* Vec2 P1 = d.x * normal; Vec2 P2 = d.y * normal; vA -= invMassA * (P1 + P2); wA -=
* invIA * (Cross(cp1.rA, P1) + Cross(cp2.rA, P2));
*
* vB += invMassB * (P1 + P2); wB += invIB * (Cross(cp1.rB, P1) + Cross(cp2.rB, P2));
*/
float P1x = normalx * dx;
float P1y = normaly * dx;
float P2x = normalx * dy;
float P2y = normaly * dy;
vA.x -= mA * (P1x + P2x);
vA.y -= mA * (P1y + P2y);
vB.x += mB * (P1x + P2x);
vB.y += mB * (P1y + P2y);
wA -= iA * (cp1rA.x * P1y - cp1rA.y * P1x + (cp2rA.x * P2y - cp2rA.y * P2x));
wB += iB * (cp1rB.x * P1y - cp1rB.y * P1x + (cp2rB.x * P2y - cp2rB.y * P2x));
// Accumulate
cp1.normalImpulse = xx;
cp2.normalImpulse = xy;
break;
}
// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
break;
}
}
// m_velocities[indexA].v.set(vA);
m_velocities[indexA].w = wA;
// m_velocities[indexB].v.set(vB);
m_velocities[indexB].w = wB;
}
}
Aggregations