Search in sources :

Example 6 with Collidable

use of spacegraph.space3d.phys.Collidable in project narchy by automenta.

the class ConvexPlaneCollisionAlgorithm method processCollision.

@Override
public void processCollision(Collidable body0, Collidable body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) {
    if (manifoldPtr == null) {
        return;
    }
    Transform tmpTrans = new Transform();
    Collidable convexObj = isSwapped ? body1 : body0;
    Collidable planeObj = isSwapped ? body0 : body1;
    ConvexShape convexShape = (ConvexShape) convexObj.shape();
    StaticPlaneShape planeShape = (StaticPlaneShape) planeObj.shape();
    boolean hasCollision = false;
    v3 planeNormal = planeShape.getPlaneNormal(new v3());
    float planeConstant = planeShape.getPlaneConstant();
    Transform planeInConvex = new Transform();
    convexObj.getWorldTransform(planeInConvex);
    planeInConvex.inverse();
    planeInConvex.mul(planeObj.getWorldTransform(tmpTrans));
    Transform convexInPlaneTrans = new Transform();
    convexInPlaneTrans.inverse(planeObj.getWorldTransform(tmpTrans));
    convexInPlaneTrans.mul(convexObj.getWorldTransform(tmpTrans));
    v3 tmp = new v3();
    tmp.negate(planeNormal);
    planeInConvex.basis.transform(tmp);
    v3 vtx = convexShape.localGetSupportingVertex(tmp, new v3());
    v3 vtxInPlane = new v3(vtx);
    convexInPlaneTrans.transform(vtxInPlane);
    float distance = (planeNormal.dot(vtxInPlane) - planeConstant);
    v3 vtxInPlaneProjected = new v3();
    tmp.scale(distance, planeNormal);
    vtxInPlaneProjected.sub(vtxInPlane, tmp);
    v3 vtxInPlaneWorld = new v3(vtxInPlaneProjected);
    planeObj.getWorldTransform(tmpTrans).transform(vtxInPlaneWorld);
    float breakingThresh = manifoldPtr.getContactBreakingThreshold();
    hasCollision = distance < breakingThresh;
    resultOut.setPersistentManifold(manifoldPtr);
    if (hasCollision) {
        // report a contact. internally this will be kept persistent, and contact reduction is done
        v3 normalOnSurfaceB = new v3(planeNormal);
        planeObj.getWorldTransform(tmpTrans).basis.transform(normalOnSurfaceB);
        v3 pOnB = new v3(vtxInPlaneWorld);
        resultOut.addContactPoint(normalOnSurfaceB, pOnB, distance, breakingThresh);
    }
    if (ownManifold) {
        if (manifoldPtr.numContacts() != 0) {
            resultOut.refreshContactPoints();
        }
    }
}
Also used : Collidable(spacegraph.space3d.phys.Collidable) ConvexShape(spacegraph.space3d.phys.shape.ConvexShape) StaticPlaneShape(spacegraph.space3d.phys.shape.StaticPlaneShape) Transform(spacegraph.space3d.phys.math.Transform) spacegraph.util.math.v3(spacegraph.util.math.v3)

Example 7 with Collidable

use of spacegraph.space3d.phys.Collidable in project narchy by automenta.

the class GhostObject method removeOverlappingObjectInternal.

/**
 * This method is mainly for expert/internal use only.
 */
public void removeOverlappingObjectInternal(Broadphasing otherProxy, Intersecter intersecter, Broadphasing thisProxy) {
    Collidable otherObject = otherProxy.data;
    assert (otherObject != null);
    OArrayList<Collidable> o = this.overlappingObjects;
    int index = o.indexOf(otherObject);
    if (index != -1) {
        // return array[index];
        int num = o.size();
        o.setFast(index, o.get(num - 1));
        o.removeFast(num - 1);
    }
}
Also used : Collidable(spacegraph.space3d.phys.Collidable)

Example 8 with Collidable

use of spacegraph.space3d.phys.Collidable in project narchy by automenta.

the class GhostObject method convexSweepTest.

public void convexSweepTest(ConvexShape castShape, Transform convexFromWorld, Transform convexToWorld, Collisions.ConvexResultCallback resultCallback, float allowedCcdPenetration) {
    Transform convexFromTrans = new Transform();
    Transform convexToTrans = new Transform();
    convexFromTrans.set(convexFromWorld);
    convexToTrans.set(convexToWorld);
    v3 castShapeAabbMin = new v3();
    v3 castShapeAabbMax = new v3();
    // compute AABB that encompasses angular movement
    v3 linVel = new v3();
    v3 angVel = new v3();
    TransformUtil.calculateVelocity(convexFromTrans, convexToTrans, 1f, linVel, angVel);
    Transform R = new Transform();
    R.setIdentity();
    R.setRotation(convexFromTrans.getRotation(new Quat4f()));
    castShape.calculateTemporalAabb(R, linVel, angVel, 1f, castShapeAabbMin, castShapeAabbMax);
    Transform tmpTrans = new Transform();
    // do a ray-shape query using convexCaster (CCD)
    for (int i = 0; i < overlappingObjects.size(); i++) {
        // return array[index];
        Collidable collidable = overlappingObjects.get(i);
        // only perform raycast if filterMask matches
        if (resultCallback.needsCollision(collidable.broadphase)) {
            // RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
            v3 collisionObjectAabbMin = new v3();
            v3 collisionObjectAabbMax = new v3();
            collidable.shape().getAabb(collidable.getWorldTransform(tmpTrans), collisionObjectAabbMin, collisionObjectAabbMax);
            AabbUtil2.aabbExpand(collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
            // could use resultCallback.closestHitFraction, but needs testing
            float[] hitLambda = { 1f };
            v3 hitNormal = new v3();
            if (AabbUtil2.rayAabb(convexFromWorld, convexToWorld, collisionObjectAabbMin, collisionObjectAabbMax, hitLambda, hitNormal)) {
                Collisions.objectQuerySingle(castShape, convexFromTrans, convexToTrans, collidable, collidable.shape(), collidable.getWorldTransform(tmpTrans), resultCallback, allowedCcdPenetration);
            }
        }
    }
}
Also used : Collidable(spacegraph.space3d.phys.Collidable) Transform(spacegraph.space3d.phys.math.Transform) spacegraph.util.math.v3(spacegraph.util.math.v3) Quat4f(spacegraph.util.math.Quat4f)

Example 9 with Collidable

use of spacegraph.space3d.phys.Collidable in project narchy by automenta.

the class SequentialImpulseConstrainer method solveGroupCacheFriendlySetup.

public float solveGroupCacheFriendlySetup(Collection<Collidable> bodies, int numBodies, FasterList<PersistentManifold> manifoldPtr, int manifold_offset, int numManifolds, FasterList<TypedConstraint> constraints, int constraints_offset, int numConstraints, ContactSolverInfo infoGlobal) /*,btStackAlloc* stackAlloc*/
{
    if ((numConstraints + numManifolds) == 0) {
        // printf("empty\n");
        return 0f;
    }
    PersistentManifold manifold = null;
    Collidable colObj0 = null, colObj1 = null;
    // btRigidBody* rb0=0,*rb1=0;
    // //#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
    // 
    // BEGIN_PROFILE("refreshManifolds");
    // 
    // int i;
    // 
    // 
    // 
    // for (i=0;i<numManifolds;i++)
    // {
    // manifold = manifoldPtr[i];
    // rb1 = (btRigidBody*)manifold->getBody1();
    // rb0 = (btRigidBody*)manifold->getBody0();
    // 
    // manifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
    // 
    // }
    // 
    // END_PROFILE("refreshManifolds");
    // //#endif //FORCE_REFESH_CONTACT_MANIFOLDS
    // int sizeofSB = sizeof(btSolverBody);
    // int sizeofSC = sizeof(btSolverConstraint);
    // if (1)
    // if m_stackAlloc, try to pack bodies/constraints to speed up solving
    // btBlock*					sablock;
    // sablock = stackAlloc->beginBlock();
    // int memsize = 16;
    // unsigned char* stackMemory = stackAlloc->allocate(memsize);
    // todo: use stack allocator for this temp memory
    // int minReservation = numManifolds * 2;
    // m_tmpSolverBodyPool.reserve(minReservation);
    // don't convert all bodies, only the one we need so solver the constraints
    /*
				{
				for (int i=0;i<numBodies;i++)
				{
				btRigidBody* rb = btRigidBody::upcast(bodies[i]);
				if (rb && 	(rb->getIslandTag() >= 0))
				{
				btAssert(rb->getCompanionId() < 0);
				int solverBodyId = m_tmpSolverBodyPool.size();
				btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
				initSolverBody(&solverBody,rb);
				rb->setCompanionId(solverBodyId);
				}
				}
				}
				*/
    // m_tmpSolverConstraintPool.reserve(minReservation);
    // m_tmpSolverFrictionConstraintPool.reserve(minReservation);
    {
        int i;
        v3 rel_pos1 = new v3();
        v3 rel_pos2 = new v3();
        v3 pos1 = new v3();
        v3 pos2 = new v3();
        v3 vel = new v3();
        v3 torqueAxis0 = new v3();
        v3 torqueAxis1 = new v3();
        v3 vel1 = new v3();
        v3 vel2 = new v3();
        // Vector3f frictionDir1 = new Vector3f();
        // Vector3f frictionDir2 = new Vector3f();
        v3 vec = new v3();
        Matrix3f tmpMat = new Matrix3f();
        for (i = 0; i < numManifolds; i++) {
            // return array[index];
            manifold = manifoldPtr.get(manifold_offset + i);
            colObj0 = (Collidable) manifold.getBody0();
            colObj1 = (Collidable) manifold.getBody1();
            int solverBodyIdA = -1;
            int solverBodyIdB = -1;
            if (manifold.numContacts() != 0) {
                if (colObj0.tag() >= 0) {
                    if (colObj0.getCompanionId() >= 0) {
                        // body has already been converted
                        solverBodyIdA = colObj0.getCompanionId();
                    } else {
                        solverBodyIdA = tmpSolverBodyPool.size();
                        SolverBody solverBody = new SolverBody();
                        tmpSolverBodyPool.add(solverBody);
                        initSolverBody(solverBody, colObj0);
                        colObj0.setCompanionId(solverBodyIdA);
                    }
                } else {
                    // create a static body
                    solverBodyIdA = tmpSolverBodyPool.size();
                    SolverBody solverBody = new SolverBody();
                    tmpSolverBodyPool.add(solverBody);
                    initSolverBody(solverBody, colObj0);
                }
                if (colObj1.tag() >= 0) {
                    if (colObj1.getCompanionId() >= 0) {
                        solverBodyIdB = colObj1.getCompanionId();
                    } else {
                        solverBodyIdB = tmpSolverBodyPool.size();
                        SolverBody solverBody = new SolverBody();
                        tmpSolverBodyPool.add(solverBody);
                        initSolverBody(solverBody, colObj1);
                        colObj1.setCompanionId(solverBodyIdB);
                    }
                } else {
                    // create a static body
                    solverBodyIdB = tmpSolverBodyPool.size();
                    SolverBody solverBody = new SolverBody();
                    tmpSolverBodyPool.add(solverBody);
                    initSolverBody(solverBody, colObj1);
                }
            }
            float relaxation;
            for (int j = 0; j < manifold.numContacts(); j++) {
                ManifoldPoint cp = manifold.getContactPoint(j);
                if (cp.distance1 <= 0f) {
                    cp.getPositionWorldOnA(pos1);
                    cp.getPositionWorldOnB(pos2);
                    rel_pos1.sub(pos1, colObj0.transform);
                    rel_pos2.sub(pos2, colObj1.transform);
                    relaxation = 1f;
                    float rel_vel;
                    int frictionIndex = tmpSolverConstraintPool.size();
                    SolverConstraint solverConstraint = new SolverConstraint();
                    tmpSolverConstraintPool.add(solverConstraint);
                    Body3D rb0 = Body3D.ifDynamic(colObj0);
                    Body3D rb1 = Body3D.ifDynamic(colObj1);
                    solverConstraint.solverBodyIdA = solverBodyIdA;
                    solverConstraint.solverBodyIdB = solverBodyIdB;
                    solverConstraint.constraintType = SolverConstraint.SolverConstraintType.SOLVER_CONTACT_1D;
                    solverConstraint.originalContactPoint = cp;
                    torqueAxis0.cross(rel_pos1, cp.normalWorldOnB);
                    if (rb0 != null) {
                        solverConstraint.angularComponentA.set(torqueAxis0);
                        rb0.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentA);
                    } else {
                        solverConstraint.angularComponentA.set(0f, 0f, 0f);
                    }
                    torqueAxis1.cross(rel_pos2, cp.normalWorldOnB);
                    if (rb1 != null) {
                        solverConstraint.angularComponentB.set(torqueAxis1);
                        rb1.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentB);
                    } else {
                        solverConstraint.angularComponentB.set(0f, 0f, 0f);
                    }
                    // #ifdef COMPUTE_IMPULSE_DENOM
                    // btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
                    // btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
                    // #else
                    float denom0 = 0f;
                    float denom1 = 0f;
                    if (rb0 != null) {
                        vec.cross(solverConstraint.angularComponentA, rel_pos1);
                        denom0 = rb0.getInvMass() + cp.normalWorldOnB.dot(vec);
                    }
                    if (rb1 != null) {
                        vec.cross(solverConstraint.angularComponentB, rel_pos2);
                        denom1 = rb1.getInvMass() + cp.normalWorldOnB.dot(vec);
                    }
                    // #endif //COMPUTE_IMPULSE_DENOM
                    float denom = relaxation / (denom0 + denom1);
                    solverConstraint.jacDiagABInv = denom;
                    solverConstraint.contactNormal.set(cp.normalWorldOnB);
                    solverConstraint.relpos1CrossNormal.cross(rel_pos1, cp.normalWorldOnB);
                    solverConstraint.relpos2CrossNormal.cross(rel_pos2, cp.normalWorldOnB);
                    if (rb0 != null) {
                        rb0.getVelocityInLocalPoint(rel_pos1, vel1);
                    } else {
                        vel1.zero();
                    }
                    if (rb1 != null) {
                        rb1.getVelocityInLocalPoint(rel_pos2, vel2);
                    } else {
                        vel2.zero();
                    }
                    vel.sub(vel1, vel2);
                    rel_vel = cp.normalWorldOnB.dot(vel);
                    solverConstraint.penetration = Math.min(cp.distance1 + infoGlobal.linearSlop, 0f);
                    // solverConstraint.m_penetration = cp.getDistance();
                    solverConstraint.friction = cp.combinedFriction;
                    solverConstraint.restitution = restitutionCurve(rel_vel, cp.combinedRestitution);
                    if (solverConstraint.restitution <= 0f) {
                        solverConstraint.restitution = 0f;
                    }
                    float penVel = -solverConstraint.penetration / infoGlobal.timeStep;
                    if (solverConstraint.restitution > penVel) {
                        solverConstraint.penetration = 0f;
                    }
                    v3 tmp = new v3();
                    // warm starting (or zero if disabled)
                    if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
                        solverConstraint.appliedImpulse = cp.appliedImpulse * infoGlobal.warmstartingFactor;
                        if (rb0 != null) {
                            tmp.scale(rb0.getInvMass(), solverConstraint.contactNormal);
                            // return array[index];
                            tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, solverConstraint.angularComponentA, solverConstraint.appliedImpulse);
                        }
                        if (rb1 != null) {
                            tmp.scale(rb1.getInvMass(), solverConstraint.contactNormal);
                            // return array[index];
                            tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, solverConstraint.angularComponentB, -solverConstraint.appliedImpulse);
                        }
                    } else {
                        solverConstraint.appliedImpulse = 0f;
                    }
                    solverConstraint.appliedPushImpulse = 0f;
                    solverConstraint.frictionIndex = tmpSolverFrictionConstraintPool.size();
                    if (!cp.lateralFrictionInitialized) {
                        cp.lateralFrictionDir1.scale(rel_vel, cp.normalWorldOnB);
                        cp.lateralFrictionDir1.sub(vel, cp.lateralFrictionDir1);
                        float lat_rel_vel = cp.lateralFrictionDir1.lengthSquared();
                        if (// 0.0f)
                        lat_rel_vel > BulletGlobals.FLT_EPSILON) {
                            cp.lateralFrictionDir1.scale(1f / (float) Math.sqrt(lat_rel_vel));
                            addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                            cp.lateralFrictionDir2.cross(cp.lateralFrictionDir1, cp.normalWorldOnB);
                            // ??
                            cp.lateralFrictionDir2.normalize();
                            addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                        } else {
                            // re-calculate friction direction every frame, todo: check if this is really needed
                            TransformUtil.planeSpace1(cp.normalWorldOnB, cp.lateralFrictionDir1, cp.lateralFrictionDir2);
                            addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                            addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                        }
                        cp.lateralFrictionInitialized = true;
                    } else {
                        addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                        addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
                    }
                    // return array[index];
                    SolverConstraint frictionConstraint1 = tmpSolverFrictionConstraintPool.get(solverConstraint.frictionIndex);
                    if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
                        frictionConstraint1.appliedImpulse = cp.appliedImpulseLateral1 * infoGlobal.warmstartingFactor;
                        if (rb0 != null) {
                            tmp.scale(rb0.getInvMass(), frictionConstraint1.contactNormal);
                            // return array[index];
                            tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint1.angularComponentA, frictionConstraint1.appliedImpulse);
                        }
                        if (rb1 != null) {
                            tmp.scale(rb1.getInvMass(), frictionConstraint1.contactNormal);
                            // return array[index];
                            tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint1.angularComponentB, -frictionConstraint1.appliedImpulse);
                        }
                    } else {
                        frictionConstraint1.appliedImpulse = 0f;
                    }
                    // return array[index];
                    SolverConstraint frictionConstraint2 = tmpSolverFrictionConstraintPool.get(solverConstraint.frictionIndex + 1);
                    if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
                        frictionConstraint2.appliedImpulse = cp.appliedImpulseLateral2 * infoGlobal.warmstartingFactor;
                        if (rb0 != null) {
                            tmp.scale(rb0.getInvMass(), frictionConstraint2.contactNormal);
                            // return array[index];
                            tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint2.angularComponentA, frictionConstraint2.appliedImpulse);
                        }
                        if (rb1 != null) {
                            tmp.scale(rb1.getInvMass(), frictionConstraint2.contactNormal);
                            // return array[index];
                            tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint2.angularComponentB, -frictionConstraint2.appliedImpulse);
                        }
                    } else {
                        frictionConstraint2.appliedImpulse = 0f;
                    }
                }
            }
        }
    }
    // TODO: btContactSolverInfo info = infoGlobal;
    int j;
    for (j = 0; j < numConstraints; j++) {
        constraints.get(constraints_offset + j).buildJacobian();
    }
    // int j;
    // for (j = 0; j < numConstraints; j++) {
    // constraints.get(constraints_offset + j).getInfo2(infoGlobal);
    // }
    int numConstraintPool = tmpSolverConstraintPool.size();
    int numFrictionPool = tmpSolverFrictionConstraintPool.size();
    // todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
    MiscUtil.resize(orderTmpConstraintPool, numConstraintPool, 0);
    MiscUtil.resize(orderFrictionConstraintPool, numFrictionPool, 0);
    int i;
    for (i = 0; i < numConstraintPool; i++) {
        orderTmpConstraintPool.setBoth(i);
    }
    for (i = 0; i < numFrictionPool; i++) {
        orderFrictionConstraintPool.setBoth(i);
    }
    return 0f;
}
Also used : Collidable(spacegraph.space3d.phys.Collidable) ManifoldPoint(spacegraph.space3d.phys.collision.narrow.ManifoldPoint) PersistentManifold(spacegraph.space3d.phys.collision.narrow.PersistentManifold) Matrix3f(spacegraph.util.math.Matrix3f) Body3D(spacegraph.space3d.phys.Body3D) SolverConstraint(spacegraph.space3d.phys.constraint.SolverConstraint) spacegraph.util.math.v3(spacegraph.util.math.v3) TypedConstraint(spacegraph.space3d.phys.constraint.TypedConstraint) ContactConstraint(spacegraph.space3d.phys.constraint.ContactConstraint) ManifoldPoint(spacegraph.space3d.phys.collision.narrow.ManifoldPoint) SolverConstraint(spacegraph.space3d.phys.constraint.SolverConstraint)

Example 10 with Collidable

use of spacegraph.space3d.phys.Collidable in project narchy by automenta.

the class CompoundCollisionAlgorithm method processCollision.

@Override
public void processCollision(Collidable body0, Collidable body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) {
    Collidable colObj = isSwapped ? body1 : body0;
    Collidable otherObj = isSwapped ? body0 : body1;
    assert (colObj.shape().isCompound());
    CompoundShape compoundShape = (CompoundShape) colObj.shape();
    // We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
    // If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
    // given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
    // determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
    // then use each overlapping node AABB against Tree0
    // and vise versa.
    Transform tmpTrans = new Transform();
    Transform orgTrans = new Transform();
    Transform childTrans = new Transform();
    Transform orgInterpolationTrans = new Transform();
    Transform newChildWorldTrans = new Transform();
    int numChildren = childCollisionAlgorithms.size();
    int i;
    for (i = 0; i < numChildren; i++) {
        // temporarily exchange parent btCollisionShape with childShape, and recurse
        CollisionShape childShape = compoundShape.getChildShape(i);
        // backup
        colObj.getWorldTransform(orgTrans);
        colObj.getInterpolationWorldTransform(orgInterpolationTrans);
        compoundShape.getChildTransform(i, childTrans);
        newChildWorldTrans.mul(orgTrans, childTrans);
        colObj.transform(newChildWorldTrans);
        colObj.setInterpolationWorldTransform(newChildWorldTrans);
        // the contactpoint is still projected back using the original inverted worldtrans
        CollisionShape tmpShape = colObj.shape();
        colObj.internalSetTemporaryCollisionShape(childShape);
        // return array[index];
        childCollisionAlgorithms.get(i).processCollision(colObj, otherObj, dispatchInfo, resultOut);
        // revert back
        colObj.internalSetTemporaryCollisionShape(tmpShape);
        colObj.transform(orgTrans);
        colObj.setInterpolationWorldTransform(orgInterpolationTrans);
    }
}
Also used : Collidable(spacegraph.space3d.phys.Collidable) CollisionShape(spacegraph.space3d.phys.shape.CollisionShape) CompoundShape(spacegraph.space3d.phys.shape.CompoundShape) Transform(spacegraph.space3d.phys.math.Transform)

Aggregations

Collidable (spacegraph.space3d.phys.Collidable)26 Transform (spacegraph.space3d.phys.math.Transform)6 spacegraph.util.math.v3 (spacegraph.util.math.v3)6 CollisionShape (spacegraph.space3d.phys.shape.CollisionShape)4 PersistentManifold (spacegraph.space3d.phys.collision.narrow.PersistentManifold)3 CompoundShape (spacegraph.space3d.phys.shape.CompoundShape)3 Broadphasing (spacegraph.space3d.phys.collision.broad.Broadphasing)2 ManifoldPoint (spacegraph.space3d.phys.collision.narrow.ManifoldPoint)2 ConcaveShape (spacegraph.space3d.phys.shape.ConcaveShape)2 SimpleSpatial (spacegraph.space3d.SimpleSpatial)1 Spatial (spacegraph.space3d.Spatial)1 Body3D (spacegraph.space3d.phys.Body3D)1 ClosestRay (spacegraph.space3d.phys.collision.ClosestRay)1 BroadphasePair (spacegraph.space3d.phys.collision.broad.BroadphasePair)1 CollisionAlgorithm (spacegraph.space3d.phys.collision.broad.CollisionAlgorithm)1 VoronoiSimplexSolver (spacegraph.space3d.phys.collision.narrow.VoronoiSimplexSolver)1 ContactConstraint (spacegraph.space3d.phys.constraint.ContactConstraint)1 SolverConstraint (spacegraph.space3d.phys.constraint.SolverConstraint)1 TypedConstraint (spacegraph.space3d.phys.constraint.TypedConstraint)1 ConvexShape (spacegraph.space3d.phys.shape.ConvexShape)1