use of spacegraph.space3d.phys.Collidable in project narchy by automenta.
the class ConvexPlaneCollisionAlgorithm method processCollision.
@Override
public void processCollision(Collidable body0, Collidable body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) {
if (manifoldPtr == null) {
return;
}
Transform tmpTrans = new Transform();
Collidable convexObj = isSwapped ? body1 : body0;
Collidable planeObj = isSwapped ? body0 : body1;
ConvexShape convexShape = (ConvexShape) convexObj.shape();
StaticPlaneShape planeShape = (StaticPlaneShape) planeObj.shape();
boolean hasCollision = false;
v3 planeNormal = planeShape.getPlaneNormal(new v3());
float planeConstant = planeShape.getPlaneConstant();
Transform planeInConvex = new Transform();
convexObj.getWorldTransform(planeInConvex);
planeInConvex.inverse();
planeInConvex.mul(planeObj.getWorldTransform(tmpTrans));
Transform convexInPlaneTrans = new Transform();
convexInPlaneTrans.inverse(planeObj.getWorldTransform(tmpTrans));
convexInPlaneTrans.mul(convexObj.getWorldTransform(tmpTrans));
v3 tmp = new v3();
tmp.negate(planeNormal);
planeInConvex.basis.transform(tmp);
v3 vtx = convexShape.localGetSupportingVertex(tmp, new v3());
v3 vtxInPlane = new v3(vtx);
convexInPlaneTrans.transform(vtxInPlane);
float distance = (planeNormal.dot(vtxInPlane) - planeConstant);
v3 vtxInPlaneProjected = new v3();
tmp.scale(distance, planeNormal);
vtxInPlaneProjected.sub(vtxInPlane, tmp);
v3 vtxInPlaneWorld = new v3(vtxInPlaneProjected);
planeObj.getWorldTransform(tmpTrans).transform(vtxInPlaneWorld);
float breakingThresh = manifoldPtr.getContactBreakingThreshold();
hasCollision = distance < breakingThresh;
resultOut.setPersistentManifold(manifoldPtr);
if (hasCollision) {
// report a contact. internally this will be kept persistent, and contact reduction is done
v3 normalOnSurfaceB = new v3(planeNormal);
planeObj.getWorldTransform(tmpTrans).basis.transform(normalOnSurfaceB);
v3 pOnB = new v3(vtxInPlaneWorld);
resultOut.addContactPoint(normalOnSurfaceB, pOnB, distance, breakingThresh);
}
if (ownManifold) {
if (manifoldPtr.numContacts() != 0) {
resultOut.refreshContactPoints();
}
}
}
use of spacegraph.space3d.phys.Collidable in project narchy by automenta.
the class GhostObject method removeOverlappingObjectInternal.
/**
* This method is mainly for expert/internal use only.
*/
public void removeOverlappingObjectInternal(Broadphasing otherProxy, Intersecter intersecter, Broadphasing thisProxy) {
Collidable otherObject = otherProxy.data;
assert (otherObject != null);
OArrayList<Collidable> o = this.overlappingObjects;
int index = o.indexOf(otherObject);
if (index != -1) {
// return array[index];
int num = o.size();
o.setFast(index, o.get(num - 1));
o.removeFast(num - 1);
}
}
use of spacegraph.space3d.phys.Collidable in project narchy by automenta.
the class GhostObject method convexSweepTest.
public void convexSweepTest(ConvexShape castShape, Transform convexFromWorld, Transform convexToWorld, Collisions.ConvexResultCallback resultCallback, float allowedCcdPenetration) {
Transform convexFromTrans = new Transform();
Transform convexToTrans = new Transform();
convexFromTrans.set(convexFromWorld);
convexToTrans.set(convexToWorld);
v3 castShapeAabbMin = new v3();
v3 castShapeAabbMax = new v3();
// compute AABB that encompasses angular movement
v3 linVel = new v3();
v3 angVel = new v3();
TransformUtil.calculateVelocity(convexFromTrans, convexToTrans, 1f, linVel, angVel);
Transform R = new Transform();
R.setIdentity();
R.setRotation(convexFromTrans.getRotation(new Quat4f()));
castShape.calculateTemporalAabb(R, linVel, angVel, 1f, castShapeAabbMin, castShapeAabbMax);
Transform tmpTrans = new Transform();
// do a ray-shape query using convexCaster (CCD)
for (int i = 0; i < overlappingObjects.size(); i++) {
// return array[index];
Collidable collidable = overlappingObjects.get(i);
// only perform raycast if filterMask matches
if (resultCallback.needsCollision(collidable.broadphase)) {
// RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
v3 collisionObjectAabbMin = new v3();
v3 collisionObjectAabbMax = new v3();
collidable.shape().getAabb(collidable.getWorldTransform(tmpTrans), collisionObjectAabbMin, collisionObjectAabbMax);
AabbUtil2.aabbExpand(collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
// could use resultCallback.closestHitFraction, but needs testing
float[] hitLambda = { 1f };
v3 hitNormal = new v3();
if (AabbUtil2.rayAabb(convexFromWorld, convexToWorld, collisionObjectAabbMin, collisionObjectAabbMax, hitLambda, hitNormal)) {
Collisions.objectQuerySingle(castShape, convexFromTrans, convexToTrans, collidable, collidable.shape(), collidable.getWorldTransform(tmpTrans), resultCallback, allowedCcdPenetration);
}
}
}
}
use of spacegraph.space3d.phys.Collidable in project narchy by automenta.
the class SequentialImpulseConstrainer method solveGroupCacheFriendlySetup.
public float solveGroupCacheFriendlySetup(Collection<Collidable> bodies, int numBodies, FasterList<PersistentManifold> manifoldPtr, int manifold_offset, int numManifolds, FasterList<TypedConstraint> constraints, int constraints_offset, int numConstraints, ContactSolverInfo infoGlobal) /*,btStackAlloc* stackAlloc*/
{
if ((numConstraints + numManifolds) == 0) {
// printf("empty\n");
return 0f;
}
PersistentManifold manifold = null;
Collidable colObj0 = null, colObj1 = null;
// btRigidBody* rb0=0,*rb1=0;
// //#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
//
// BEGIN_PROFILE("refreshManifolds");
//
// int i;
//
//
//
// for (i=0;i<numManifolds;i++)
// {
// manifold = manifoldPtr[i];
// rb1 = (btRigidBody*)manifold->getBody1();
// rb0 = (btRigidBody*)manifold->getBody0();
//
// manifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
//
// }
//
// END_PROFILE("refreshManifolds");
// //#endif //FORCE_REFESH_CONTACT_MANIFOLDS
// int sizeofSB = sizeof(btSolverBody);
// int sizeofSC = sizeof(btSolverConstraint);
// if (1)
// if m_stackAlloc, try to pack bodies/constraints to speed up solving
// btBlock* sablock;
// sablock = stackAlloc->beginBlock();
// int memsize = 16;
// unsigned char* stackMemory = stackAlloc->allocate(memsize);
// todo: use stack allocator for this temp memory
// int minReservation = numManifolds * 2;
// m_tmpSolverBodyPool.reserve(minReservation);
// don't convert all bodies, only the one we need so solver the constraints
/*
{
for (int i=0;i<numBodies;i++)
{
btRigidBody* rb = btRigidBody::upcast(bodies[i]);
if (rb && (rb->getIslandTag() >= 0))
{
btAssert(rb->getCompanionId() < 0);
int solverBodyId = m_tmpSolverBodyPool.size();
btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
initSolverBody(&solverBody,rb);
rb->setCompanionId(solverBodyId);
}
}
}
*/
// m_tmpSolverConstraintPool.reserve(minReservation);
// m_tmpSolverFrictionConstraintPool.reserve(minReservation);
{
int i;
v3 rel_pos1 = new v3();
v3 rel_pos2 = new v3();
v3 pos1 = new v3();
v3 pos2 = new v3();
v3 vel = new v3();
v3 torqueAxis0 = new v3();
v3 torqueAxis1 = new v3();
v3 vel1 = new v3();
v3 vel2 = new v3();
// Vector3f frictionDir1 = new Vector3f();
// Vector3f frictionDir2 = new Vector3f();
v3 vec = new v3();
Matrix3f tmpMat = new Matrix3f();
for (i = 0; i < numManifolds; i++) {
// return array[index];
manifold = manifoldPtr.get(manifold_offset + i);
colObj0 = (Collidable) manifold.getBody0();
colObj1 = (Collidable) manifold.getBody1();
int solverBodyIdA = -1;
int solverBodyIdB = -1;
if (manifold.numContacts() != 0) {
if (colObj0.tag() >= 0) {
if (colObj0.getCompanionId() >= 0) {
// body has already been converted
solverBodyIdA = colObj0.getCompanionId();
} else {
solverBodyIdA = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj0);
colObj0.setCompanionId(solverBodyIdA);
}
} else {
// create a static body
solverBodyIdA = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj0);
}
if (colObj1.tag() >= 0) {
if (colObj1.getCompanionId() >= 0) {
solverBodyIdB = colObj1.getCompanionId();
} else {
solverBodyIdB = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj1);
colObj1.setCompanionId(solverBodyIdB);
}
} else {
// create a static body
solverBodyIdB = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj1);
}
}
float relaxation;
for (int j = 0; j < manifold.numContacts(); j++) {
ManifoldPoint cp = manifold.getContactPoint(j);
if (cp.distance1 <= 0f) {
cp.getPositionWorldOnA(pos1);
cp.getPositionWorldOnB(pos2);
rel_pos1.sub(pos1, colObj0.transform);
rel_pos2.sub(pos2, colObj1.transform);
relaxation = 1f;
float rel_vel;
int frictionIndex = tmpSolverConstraintPool.size();
SolverConstraint solverConstraint = new SolverConstraint();
tmpSolverConstraintPool.add(solverConstraint);
Body3D rb0 = Body3D.ifDynamic(colObj0);
Body3D rb1 = Body3D.ifDynamic(colObj1);
solverConstraint.solverBodyIdA = solverBodyIdA;
solverConstraint.solverBodyIdB = solverBodyIdB;
solverConstraint.constraintType = SolverConstraint.SolverConstraintType.SOLVER_CONTACT_1D;
solverConstraint.originalContactPoint = cp;
torqueAxis0.cross(rel_pos1, cp.normalWorldOnB);
if (rb0 != null) {
solverConstraint.angularComponentA.set(torqueAxis0);
rb0.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentA);
} else {
solverConstraint.angularComponentA.set(0f, 0f, 0f);
}
torqueAxis1.cross(rel_pos2, cp.normalWorldOnB);
if (rb1 != null) {
solverConstraint.angularComponentB.set(torqueAxis1);
rb1.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentB);
} else {
solverConstraint.angularComponentB.set(0f, 0f, 0f);
}
// #ifdef COMPUTE_IMPULSE_DENOM
// btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
// btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
// #else
float denom0 = 0f;
float denom1 = 0f;
if (rb0 != null) {
vec.cross(solverConstraint.angularComponentA, rel_pos1);
denom0 = rb0.getInvMass() + cp.normalWorldOnB.dot(vec);
}
if (rb1 != null) {
vec.cross(solverConstraint.angularComponentB, rel_pos2);
denom1 = rb1.getInvMass() + cp.normalWorldOnB.dot(vec);
}
// #endif //COMPUTE_IMPULSE_DENOM
float denom = relaxation / (denom0 + denom1);
solverConstraint.jacDiagABInv = denom;
solverConstraint.contactNormal.set(cp.normalWorldOnB);
solverConstraint.relpos1CrossNormal.cross(rel_pos1, cp.normalWorldOnB);
solverConstraint.relpos2CrossNormal.cross(rel_pos2, cp.normalWorldOnB);
if (rb0 != null) {
rb0.getVelocityInLocalPoint(rel_pos1, vel1);
} else {
vel1.zero();
}
if (rb1 != null) {
rb1.getVelocityInLocalPoint(rel_pos2, vel2);
} else {
vel2.zero();
}
vel.sub(vel1, vel2);
rel_vel = cp.normalWorldOnB.dot(vel);
solverConstraint.penetration = Math.min(cp.distance1 + infoGlobal.linearSlop, 0f);
// solverConstraint.m_penetration = cp.getDistance();
solverConstraint.friction = cp.combinedFriction;
solverConstraint.restitution = restitutionCurve(rel_vel, cp.combinedRestitution);
if (solverConstraint.restitution <= 0f) {
solverConstraint.restitution = 0f;
}
float penVel = -solverConstraint.penetration / infoGlobal.timeStep;
if (solverConstraint.restitution > penVel) {
solverConstraint.penetration = 0f;
}
v3 tmp = new v3();
// warm starting (or zero if disabled)
if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
solverConstraint.appliedImpulse = cp.appliedImpulse * infoGlobal.warmstartingFactor;
if (rb0 != null) {
tmp.scale(rb0.getInvMass(), solverConstraint.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, solverConstraint.angularComponentA, solverConstraint.appliedImpulse);
}
if (rb1 != null) {
tmp.scale(rb1.getInvMass(), solverConstraint.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, solverConstraint.angularComponentB, -solverConstraint.appliedImpulse);
}
} else {
solverConstraint.appliedImpulse = 0f;
}
solverConstraint.appliedPushImpulse = 0f;
solverConstraint.frictionIndex = tmpSolverFrictionConstraintPool.size();
if (!cp.lateralFrictionInitialized) {
cp.lateralFrictionDir1.scale(rel_vel, cp.normalWorldOnB);
cp.lateralFrictionDir1.sub(vel, cp.lateralFrictionDir1);
float lat_rel_vel = cp.lateralFrictionDir1.lengthSquared();
if (// 0.0f)
lat_rel_vel > BulletGlobals.FLT_EPSILON) {
cp.lateralFrictionDir1.scale(1f / (float) Math.sqrt(lat_rel_vel));
addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
cp.lateralFrictionDir2.cross(cp.lateralFrictionDir1, cp.normalWorldOnB);
// ??
cp.lateralFrictionDir2.normalize();
addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
} else {
// re-calculate friction direction every frame, todo: check if this is really needed
TransformUtil.planeSpace1(cp.normalWorldOnB, cp.lateralFrictionDir1, cp.lateralFrictionDir2);
addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
cp.lateralFrictionInitialized = true;
} else {
addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
// return array[index];
SolverConstraint frictionConstraint1 = tmpSolverFrictionConstraintPool.get(solverConstraint.frictionIndex);
if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
frictionConstraint1.appliedImpulse = cp.appliedImpulseLateral1 * infoGlobal.warmstartingFactor;
if (rb0 != null) {
tmp.scale(rb0.getInvMass(), frictionConstraint1.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint1.angularComponentA, frictionConstraint1.appliedImpulse);
}
if (rb1 != null) {
tmp.scale(rb1.getInvMass(), frictionConstraint1.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint1.angularComponentB, -frictionConstraint1.appliedImpulse);
}
} else {
frictionConstraint1.appliedImpulse = 0f;
}
// return array[index];
SolverConstraint frictionConstraint2 = tmpSolverFrictionConstraintPool.get(solverConstraint.frictionIndex + 1);
if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
frictionConstraint2.appliedImpulse = cp.appliedImpulseLateral2 * infoGlobal.warmstartingFactor;
if (rb0 != null) {
tmp.scale(rb0.getInvMass(), frictionConstraint2.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint2.angularComponentA, frictionConstraint2.appliedImpulse);
}
if (rb1 != null) {
tmp.scale(rb1.getInvMass(), frictionConstraint2.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint2.angularComponentB, -frictionConstraint2.appliedImpulse);
}
} else {
frictionConstraint2.appliedImpulse = 0f;
}
}
}
}
}
// TODO: btContactSolverInfo info = infoGlobal;
int j;
for (j = 0; j < numConstraints; j++) {
constraints.get(constraints_offset + j).buildJacobian();
}
// int j;
// for (j = 0; j < numConstraints; j++) {
// constraints.get(constraints_offset + j).getInfo2(infoGlobal);
// }
int numConstraintPool = tmpSolverConstraintPool.size();
int numFrictionPool = tmpSolverFrictionConstraintPool.size();
// todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
MiscUtil.resize(orderTmpConstraintPool, numConstraintPool, 0);
MiscUtil.resize(orderFrictionConstraintPool, numFrictionPool, 0);
int i;
for (i = 0; i < numConstraintPool; i++) {
orderTmpConstraintPool.setBoth(i);
}
for (i = 0; i < numFrictionPool; i++) {
orderFrictionConstraintPool.setBoth(i);
}
return 0f;
}
use of spacegraph.space3d.phys.Collidable in project narchy by automenta.
the class CompoundCollisionAlgorithm method processCollision.
@Override
public void processCollision(Collidable body0, Collidable body1, DispatcherInfo dispatchInfo, ManifoldResult resultOut) {
Collidable colObj = isSwapped ? body1 : body0;
Collidable otherObj = isSwapped ? body0 : body1;
assert (colObj.shape().isCompound());
CompoundShape compoundShape = (CompoundShape) colObj.shape();
// We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
// If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
// given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
// determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
// then use each overlapping node AABB against Tree0
// and vise versa.
Transform tmpTrans = new Transform();
Transform orgTrans = new Transform();
Transform childTrans = new Transform();
Transform orgInterpolationTrans = new Transform();
Transform newChildWorldTrans = new Transform();
int numChildren = childCollisionAlgorithms.size();
int i;
for (i = 0; i < numChildren; i++) {
// temporarily exchange parent btCollisionShape with childShape, and recurse
CollisionShape childShape = compoundShape.getChildShape(i);
// backup
colObj.getWorldTransform(orgTrans);
colObj.getInterpolationWorldTransform(orgInterpolationTrans);
compoundShape.getChildTransform(i, childTrans);
newChildWorldTrans.mul(orgTrans, childTrans);
colObj.transform(newChildWorldTrans);
colObj.setInterpolationWorldTransform(newChildWorldTrans);
// the contactpoint is still projected back using the original inverted worldtrans
CollisionShape tmpShape = colObj.shape();
colObj.internalSetTemporaryCollisionShape(childShape);
// return array[index];
childCollisionAlgorithms.get(i).processCollision(colObj, otherObj, dispatchInfo, resultOut);
// revert back
colObj.internalSetTemporaryCollisionShape(tmpShape);
colObj.transform(orgTrans);
colObj.setInterpolationWorldTransform(orgInterpolationTrans);
}
}
Aggregations