use of spacegraph.space3d.phys.collision.narrow.PersistentManifold in project narchy by automenta.
the class SequentialImpulseConstrainer method solveGroupCacheFriendlySetup.
public float solveGroupCacheFriendlySetup(Collection<Collidable> bodies, int numBodies, FasterList<PersistentManifold> manifoldPtr, int manifold_offset, int numManifolds, FasterList<TypedConstraint> constraints, int constraints_offset, int numConstraints, ContactSolverInfo infoGlobal) /*,btStackAlloc* stackAlloc*/
{
if ((numConstraints + numManifolds) == 0) {
// printf("empty\n");
return 0f;
}
PersistentManifold manifold = null;
Collidable colObj0 = null, colObj1 = null;
// btRigidBody* rb0=0,*rb1=0;
// //#ifdef FORCE_REFESH_CONTACT_MANIFOLDS
//
// BEGIN_PROFILE("refreshManifolds");
//
// int i;
//
//
//
// for (i=0;i<numManifolds;i++)
// {
// manifold = manifoldPtr[i];
// rb1 = (btRigidBody*)manifold->getBody1();
// rb0 = (btRigidBody*)manifold->getBody0();
//
// manifold->refreshContactPoints(rb0->getCenterOfMassTransform(),rb1->getCenterOfMassTransform());
//
// }
//
// END_PROFILE("refreshManifolds");
// //#endif //FORCE_REFESH_CONTACT_MANIFOLDS
// int sizeofSB = sizeof(btSolverBody);
// int sizeofSC = sizeof(btSolverConstraint);
// if (1)
// if m_stackAlloc, try to pack bodies/constraints to speed up solving
// btBlock* sablock;
// sablock = stackAlloc->beginBlock();
// int memsize = 16;
// unsigned char* stackMemory = stackAlloc->allocate(memsize);
// todo: use stack allocator for this temp memory
// int minReservation = numManifolds * 2;
// m_tmpSolverBodyPool.reserve(minReservation);
// don't convert all bodies, only the one we need so solver the constraints
/*
{
for (int i=0;i<numBodies;i++)
{
btRigidBody* rb = btRigidBody::upcast(bodies[i]);
if (rb && (rb->getIslandTag() >= 0))
{
btAssert(rb->getCompanionId() < 0);
int solverBodyId = m_tmpSolverBodyPool.size();
btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
initSolverBody(&solverBody,rb);
rb->setCompanionId(solverBodyId);
}
}
}
*/
// m_tmpSolverConstraintPool.reserve(minReservation);
// m_tmpSolverFrictionConstraintPool.reserve(minReservation);
{
int i;
v3 rel_pos1 = new v3();
v3 rel_pos2 = new v3();
v3 pos1 = new v3();
v3 pos2 = new v3();
v3 vel = new v3();
v3 torqueAxis0 = new v3();
v3 torqueAxis1 = new v3();
v3 vel1 = new v3();
v3 vel2 = new v3();
// Vector3f frictionDir1 = new Vector3f();
// Vector3f frictionDir2 = new Vector3f();
v3 vec = new v3();
Matrix3f tmpMat = new Matrix3f();
for (i = 0; i < numManifolds; i++) {
// return array[index];
manifold = manifoldPtr.get(manifold_offset + i);
colObj0 = (Collidable) manifold.getBody0();
colObj1 = (Collidable) manifold.getBody1();
int solverBodyIdA = -1;
int solverBodyIdB = -1;
if (manifold.numContacts() != 0) {
if (colObj0.tag() >= 0) {
if (colObj0.getCompanionId() >= 0) {
// body has already been converted
solverBodyIdA = colObj0.getCompanionId();
} else {
solverBodyIdA = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj0);
colObj0.setCompanionId(solverBodyIdA);
}
} else {
// create a static body
solverBodyIdA = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj0);
}
if (colObj1.tag() >= 0) {
if (colObj1.getCompanionId() >= 0) {
solverBodyIdB = colObj1.getCompanionId();
} else {
solverBodyIdB = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj1);
colObj1.setCompanionId(solverBodyIdB);
}
} else {
// create a static body
solverBodyIdB = tmpSolverBodyPool.size();
SolverBody solverBody = new SolverBody();
tmpSolverBodyPool.add(solverBody);
initSolverBody(solverBody, colObj1);
}
}
float relaxation;
for (int j = 0; j < manifold.numContacts(); j++) {
ManifoldPoint cp = manifold.getContactPoint(j);
if (cp.distance1 <= 0f) {
cp.getPositionWorldOnA(pos1);
cp.getPositionWorldOnB(pos2);
rel_pos1.sub(pos1, colObj0.transform);
rel_pos2.sub(pos2, colObj1.transform);
relaxation = 1f;
float rel_vel;
int frictionIndex = tmpSolverConstraintPool.size();
SolverConstraint solverConstraint = new SolverConstraint();
tmpSolverConstraintPool.add(solverConstraint);
Body3D rb0 = Body3D.ifDynamic(colObj0);
Body3D rb1 = Body3D.ifDynamic(colObj1);
solverConstraint.solverBodyIdA = solverBodyIdA;
solverConstraint.solverBodyIdB = solverBodyIdB;
solverConstraint.constraintType = SolverConstraint.SolverConstraintType.SOLVER_CONTACT_1D;
solverConstraint.originalContactPoint = cp;
torqueAxis0.cross(rel_pos1, cp.normalWorldOnB);
if (rb0 != null) {
solverConstraint.angularComponentA.set(torqueAxis0);
rb0.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentA);
} else {
solverConstraint.angularComponentA.set(0f, 0f, 0f);
}
torqueAxis1.cross(rel_pos2, cp.normalWorldOnB);
if (rb1 != null) {
solverConstraint.angularComponentB.set(torqueAxis1);
rb1.getInvInertiaTensorWorld(tmpMat).transform(solverConstraint.angularComponentB);
} else {
solverConstraint.angularComponentB.set(0f, 0f, 0f);
}
// #ifdef COMPUTE_IMPULSE_DENOM
// btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
// btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
// #else
float denom0 = 0f;
float denom1 = 0f;
if (rb0 != null) {
vec.cross(solverConstraint.angularComponentA, rel_pos1);
denom0 = rb0.getInvMass() + cp.normalWorldOnB.dot(vec);
}
if (rb1 != null) {
vec.cross(solverConstraint.angularComponentB, rel_pos2);
denom1 = rb1.getInvMass() + cp.normalWorldOnB.dot(vec);
}
// #endif //COMPUTE_IMPULSE_DENOM
float denom = relaxation / (denom0 + denom1);
solverConstraint.jacDiagABInv = denom;
solverConstraint.contactNormal.set(cp.normalWorldOnB);
solverConstraint.relpos1CrossNormal.cross(rel_pos1, cp.normalWorldOnB);
solverConstraint.relpos2CrossNormal.cross(rel_pos2, cp.normalWorldOnB);
if (rb0 != null) {
rb0.getVelocityInLocalPoint(rel_pos1, vel1);
} else {
vel1.zero();
}
if (rb1 != null) {
rb1.getVelocityInLocalPoint(rel_pos2, vel2);
} else {
vel2.zero();
}
vel.sub(vel1, vel2);
rel_vel = cp.normalWorldOnB.dot(vel);
solverConstraint.penetration = Math.min(cp.distance1 + infoGlobal.linearSlop, 0f);
// solverConstraint.m_penetration = cp.getDistance();
solverConstraint.friction = cp.combinedFriction;
solverConstraint.restitution = restitutionCurve(rel_vel, cp.combinedRestitution);
if (solverConstraint.restitution <= 0f) {
solverConstraint.restitution = 0f;
}
float penVel = -solverConstraint.penetration / infoGlobal.timeStep;
if (solverConstraint.restitution > penVel) {
solverConstraint.penetration = 0f;
}
v3 tmp = new v3();
// warm starting (or zero if disabled)
if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
solverConstraint.appliedImpulse = cp.appliedImpulse * infoGlobal.warmstartingFactor;
if (rb0 != null) {
tmp.scale(rb0.getInvMass(), solverConstraint.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, solverConstraint.angularComponentA, solverConstraint.appliedImpulse);
}
if (rb1 != null) {
tmp.scale(rb1.getInvMass(), solverConstraint.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, solverConstraint.angularComponentB, -solverConstraint.appliedImpulse);
}
} else {
solverConstraint.appliedImpulse = 0f;
}
solverConstraint.appliedPushImpulse = 0f;
solverConstraint.frictionIndex = tmpSolverFrictionConstraintPool.size();
if (!cp.lateralFrictionInitialized) {
cp.lateralFrictionDir1.scale(rel_vel, cp.normalWorldOnB);
cp.lateralFrictionDir1.sub(vel, cp.lateralFrictionDir1);
float lat_rel_vel = cp.lateralFrictionDir1.lengthSquared();
if (// 0.0f)
lat_rel_vel > BulletGlobals.FLT_EPSILON) {
cp.lateralFrictionDir1.scale(1f / (float) Math.sqrt(lat_rel_vel));
addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
cp.lateralFrictionDir2.cross(cp.lateralFrictionDir1, cp.normalWorldOnB);
// ??
cp.lateralFrictionDir2.normalize();
addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
} else {
// re-calculate friction direction every frame, todo: check if this is really needed
TransformUtil.planeSpace1(cp.normalWorldOnB, cp.lateralFrictionDir1, cp.lateralFrictionDir2);
addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
cp.lateralFrictionInitialized = true;
} else {
addFrictionConstraint(cp.lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
addFrictionConstraint(cp.lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
// return array[index];
SolverConstraint frictionConstraint1 = tmpSolverFrictionConstraintPool.get(solverConstraint.frictionIndex);
if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
frictionConstraint1.appliedImpulse = cp.appliedImpulseLateral1 * infoGlobal.warmstartingFactor;
if (rb0 != null) {
tmp.scale(rb0.getInvMass(), frictionConstraint1.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint1.angularComponentA, frictionConstraint1.appliedImpulse);
}
if (rb1 != null) {
tmp.scale(rb1.getInvMass(), frictionConstraint1.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint1.angularComponentB, -frictionConstraint1.appliedImpulse);
}
} else {
frictionConstraint1.appliedImpulse = 0f;
}
// return array[index];
SolverConstraint frictionConstraint2 = tmpSolverFrictionConstraintPool.get(solverConstraint.frictionIndex + 1);
if ((infoGlobal.solverMode & SolverMode.SOLVER_USE_WARMSTARTING) != 0) {
frictionConstraint2.appliedImpulse = cp.appliedImpulseLateral2 * infoGlobal.warmstartingFactor;
if (rb0 != null) {
tmp.scale(rb0.getInvMass(), frictionConstraint2.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdA).internalApplyImpulse(tmp, frictionConstraint2.angularComponentA, frictionConstraint2.appliedImpulse);
}
if (rb1 != null) {
tmp.scale(rb1.getInvMass(), frictionConstraint2.contactNormal);
// return array[index];
tmpSolverBodyPool.get(solverConstraint.solverBodyIdB).internalApplyImpulse(tmp, frictionConstraint2.angularComponentB, -frictionConstraint2.appliedImpulse);
}
} else {
frictionConstraint2.appliedImpulse = 0f;
}
}
}
}
}
// TODO: btContactSolverInfo info = infoGlobal;
int j;
for (j = 0; j < numConstraints; j++) {
constraints.get(constraints_offset + j).buildJacobian();
}
// int j;
// for (j = 0; j < numConstraints; j++) {
// constraints.get(constraints_offset + j).getInfo2(infoGlobal);
// }
int numConstraintPool = tmpSolverConstraintPool.size();
int numFrictionPool = tmpSolverFrictionConstraintPool.size();
// todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
MiscUtil.resize(orderTmpConstraintPool, numConstraintPool, 0);
MiscUtil.resize(orderFrictionConstraintPool, numFrictionPool, 0);
int i;
for (i = 0; i < numConstraintPool; i++) {
orderTmpConstraintPool.setBoth(i);
}
for (i = 0; i < numFrictionPool; i++) {
orderFrictionConstraintPool.setBoth(i);
}
return 0f;
}
use of spacegraph.space3d.phys.collision.narrow.PersistentManifold in project narchy by automenta.
the class SequentialImpulseConstrainer method solveGroup.
/**
* Sequentially applies impulses.
*/
@Override
public float solveGroup(Collection<Collidable> bodies, int numBodies, FasterList<PersistentManifold> manifoldPtr, int manifold_offset, int numManifolds, FasterList<TypedConstraint> constraints, int constraints_offset, int numConstraints, ContactSolverInfo infoGlobal, Intersecter intersecter) {
// TODO: solver cache friendly
if ((infoGlobal.solverMode & SolverMode.SOLVER_CACHE_FRIENDLY) != 0) {
// SimpleDynamicsWorld needs to switch off SOLVER_CACHE_FRIENDLY
assert (bodies != null);
assert (numBodies != 0);
float value = solveGroupCacheFriendly(bodies, numBodies, manifoldPtr, manifold_offset, numManifolds, constraints, constraints_offset, numConstraints, infoGlobal);
return value;
}
ContactSolverInfo info = new ContactSolverInfo(infoGlobal);
int numiter = infoGlobal.numIterations;
int totalPoints = 0;
OrderIndex[] gOrder = this.gOrder;
{
short j;
for (j = 0; j < numManifolds; j++) {
// return array[index];
PersistentManifold manifold = manifoldPtr.get(manifold_offset + j);
prepareConstraints(manifold, info);
// return array[index];
for (short p = 0; p < manifoldPtr.get(manifold_offset + j).numContacts(); p++) {
gOrder[totalPoints].manifoldIndex = j;
gOrder[totalPoints].pointIndex = p;
totalPoints++;
}
}
}
{
int j;
for (j = 0; j < numConstraints; j++) {
constraints.get(constraints_offset + j).buildJacobian();
}
}
// should traverse the contacts random order...
int iteration;
for (iteration = 0; iteration < numiter; iteration++) {
int j;
if ((infoGlobal.solverMode & SolverMode.SOLVER_RANDMIZE_ORDER) != 0) {
if ((iteration & 7) == 0) {
for (j = 0; j < totalPoints; ++j) {
// JAVA NOTE: swaps references instead of copying values (but that's fine in this context)
OrderIndex tmp = gOrder[j];
int swapi = randInt2(j + 1);
gOrder[j] = gOrder[swapi];
gOrder[swapi] = tmp;
}
}
}
for (j = 0; j < numConstraints; j++) {
constraints.get(constraints_offset + j).solveConstraint(info.timeStep);
}
for (j = 0; j < totalPoints; j++) {
PersistentManifold manifold = manifoldPtr.get(manifold_offset + gOrder[j].manifoldIndex);
solve((Body3D) manifold.getBody0(), (Body3D) manifold.getBody1(), manifold.getContactPoint(gOrder[j].pointIndex), info, iteration);
}
for (j = 0; j < totalPoints; j++) {
// return array[index];
PersistentManifold manifold = manifoldPtr.get(manifold_offset + gOrder[j].manifoldIndex);
solveFriction((Body3D) manifold.getBody0(), (Body3D) manifold.getBody1(), manifold.getContactPoint(gOrder[j].pointIndex), info, iteration);
}
}
return 0f;
}
use of spacegraph.space3d.phys.collision.narrow.PersistentManifold in project narchy by automenta.
the class Islands method buildIslands.
public void buildIslands(Intersecter intersecter, List<Collidable> collidables) {
// System.out.println("builder islands");
islandmanifold.clearFast();
// we are going to sort the unionfind array, and store the element id in the size
// afterwards, we clean unionfind, to make sure no-one uses it anymore
find.sortIslands();
int numElem = find.size();
int endIslandIndex = 1;
int startIslandIndex;
// update the sleeping state for bodies, if all are sleeping
for (startIslandIndex = 0; startIslandIndex < numElem; startIslandIndex = endIslandIndex) {
int islandId = find.id(startIslandIndex);
for (endIslandIndex = startIslandIndex + 1; (endIslandIndex < numElem) && (find.id(endIslandIndex) == islandId); endIslandIndex++) {
}
// int numSleeping = 0;
boolean allSleeping = true;
int idx;
for (idx = startIslandIndex; idx < endIslandIndex; idx++) {
int i = find.sz(idx);
// return array[index];
final Collidable colObj0 = collidables.get(i);
final int tag0 = colObj0.tag();
if ((tag0 != islandId) && (tag0 != -1)) {
islandError(colObj0);
continue;
}
// assert ((tag0 == islandId) || (tag0 == -1));
if (tag0 == islandId) {
int s = colObj0.getActivationState();
if (s == Collidable.ACTIVE_TAG || s == Collidable.DISABLE_DEACTIVATION) {
allSleeping = false;
}
}
}
if (allSleeping) {
// int idx;
for (idx = startIslandIndex; idx < endIslandIndex; idx++) {
int i = find.sz(idx);
// return array[index];
final Collidable colObj0 = collidables.get(i);
int tag0 = colObj0.tag();
if ((tag0 != islandId) && (tag0 != -1)) {
islandError(colObj0);
continue;
}
if (tag0 == islandId) {
colObj0.setActivationState(Collidable.ISLAND_SLEEPING);
}
}
} else {
// int idx;
for (idx = startIslandIndex; idx < endIslandIndex; idx++) {
int i = find.sz(idx);
// return array[index];
Collidable colObj0 = collidables.get(i);
int tag0 = colObj0.tag();
if ((tag0 != islandId) && (tag0 != -1)) {
islandError(colObj0);
continue;
}
if (tag0 == islandId) {
if (colObj0.getActivationState() == Collidable.ISLAND_SLEEPING) {
colObj0.setActivationState(Collidable.WANTS_DEACTIVATION);
}
}
}
}
}
int i;
int maxNumManifolds = intersecter.manifoldCount();
for (i = 0; i < maxNumManifolds; i++) {
PersistentManifold manifold = intersecter.manifold(i);
Collidable colObj0 = (Collidable) manifold.getBody0();
if (colObj0 != null) {
Collidable colObj1 = (Collidable) manifold.getBody1();
if (colObj1 != null) {
// todo: check sleeping conditions!
int s0 = colObj0.getActivationState();
int s1 = colObj1.getActivationState();
if ((s0 != Collidable.ISLAND_SLEEPING) || (s1 != Collidable.ISLAND_SLEEPING)) {
// kinematic objects don't merge islands, but wake up all connected objects
if (s0 != Collidable.ISLAND_SLEEPING && colObj0.isKinematicObject()) {
colObj1.activate(true);
}
if (s1 != Collidable.ISLAND_SLEEPING && colObj1.isKinematicObject()) {
colObj0.activate(true);
}
// filtering for response
if (intersecter.needsResponse(colObj0, colObj1)) {
islandmanifold.add(manifold);
}
// #endif //SPLIT_ISLANDS
}
}
}
}
}
use of spacegraph.space3d.phys.collision.narrow.PersistentManifold in project narchy by automenta.
the class DefaultIntersecter method getNewManifold.
@Override
public PersistentManifold getNewManifold(Object b0, Object b1) {
// gNumManifold++;
// btAssert(gNumManifold < 65535);
Collidable body0 = (Collidable) b0;
Collidable body1 = (Collidable) b1;
/*
void* mem = 0;
if (m_persistentManifoldPoolAllocator->getFreeCount())
{
mem = m_persistentManifoldPoolAllocator->allocate(sizeof(btPersistentManifold));
} else
{
mem = btAlignedAlloc(sizeof(btPersistentManifold),16);
}
btPersistentManifold* manifold = new(mem) btPersistentManifold (body0,body1,0);
manifold->m_index1a = m_manifoldsPtr.size();
m_manifoldsPtr.push_back(manifold);
*/
PersistentManifold manifold = new PersistentManifold(BulletGlobals.the.get());
manifold.init(body0, body1, 0);
manifold.index1a = manifolds.size();
manifolds.add(manifold);
return manifold;
}
Aggregations