use of sun.dc.pr.Rasterizer in project jdk8u_jdk by JetBrains.
the class DuctusRenderingEngine method getAATileGenerator.
/**
* {@inheritDoc}
*/
@Override
public AATileGenerator getAATileGenerator(double x, double y, double dx1, double dy1, double dx2, double dy2, double lw1, double lw2, Region clip, int[] bbox) {
// REMIND: Deal with large coordinates!
double ldx1, ldy1, ldx2, ldy2;
boolean innerpgram = (lw1 > 0 && lw2 > 0);
if (innerpgram) {
ldx1 = dx1 * lw1;
ldy1 = dy1 * lw1;
ldx2 = dx2 * lw2;
ldy2 = dy2 * lw2;
x -= (ldx1 + ldx2) / 2.0;
y -= (ldy1 + ldy2) / 2.0;
dx1 += ldx1;
dy1 += ldy1;
dx2 += ldx2;
dy2 += ldy2;
if (lw1 > 1 && lw2 > 1) {
// Inner parallelogram was entirely consumed by stroke...
innerpgram = false;
}
} else {
ldx1 = ldy1 = ldx2 = ldy2 = 0;
}
Rasterizer r = getRasterizer();
r.setUsage(Rasterizer.EOFILL);
r.beginPath();
r.beginSubpath((float) x, (float) y);
r.appendLine((float) (x + dx1), (float) (y + dy1));
r.appendLine((float) (x + dx1 + dx2), (float) (y + dy1 + dy2));
r.appendLine((float) (x + dx2), (float) (y + dy2));
r.closedSubpath();
if (innerpgram) {
x += ldx1 + ldx2;
y += ldy1 + ldy2;
dx1 -= 2.0 * ldx1;
dy1 -= 2.0 * ldy1;
dx2 -= 2.0 * ldx2;
dy2 -= 2.0 * ldy2;
r.beginSubpath((float) x, (float) y);
r.appendLine((float) (x + dx1), (float) (y + dy1));
r.appendLine((float) (x + dx1 + dx2), (float) (y + dy1 + dy2));
r.appendLine((float) (x + dx2), (float) (y + dy2));
r.closedSubpath();
}
try {
r.endPath();
r.getAlphaBox(bbox);
clip.clipBoxToBounds(bbox);
if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
dropRasterizer(r);
return null;
}
r.setOutputArea(bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]);
} catch (PRException e) {
/*
* This exeption is thrown from the native part of the Ductus
* (only in case of a debug build) to indicate that some
* segments of the path have very large coordinates.
* See 4485298 for more info.
*/
System.err.println("DuctusRenderingEngine.getAATileGenerator: " + e);
}
return r;
}
use of sun.dc.pr.Rasterizer in project jdk8u_jdk by JetBrains.
the class DuctusRenderingEngine method getAATileGenerator.
/**
* {@inheritDoc}
*/
@Override
public AATileGenerator getAATileGenerator(Shape s, AffineTransform at, Region clip, BasicStroke bs, boolean thin, boolean normalize, int[] bbox) {
Rasterizer r = getRasterizer();
PathIterator pi = s.getPathIterator(at);
if (bs != null) {
float[] matrix = null;
r.setUsage(Rasterizer.STROKE);
if (thin) {
r.setPenDiameter(MinPenSizeAA);
} else {
r.setPenDiameter(bs.getLineWidth());
if (at != null) {
matrix = getTransformMatrix(at);
r.setPenT4(matrix);
}
r.setPenFitting(PenUnits, MinPenUnitsAA);
}
r.setCaps(RasterizerCaps[bs.getEndCap()]);
r.setCorners(RasterizerCorners[bs.getLineJoin()], bs.getMiterLimit());
float[] dashes = bs.getDashArray();
if (dashes != null) {
r.setDash(dashes, bs.getDashPhase());
if (at != null && matrix == null) {
matrix = getTransformMatrix(at);
}
r.setDashT4(matrix);
}
} else {
r.setUsage(pi.getWindingRule() == PathIterator.WIND_EVEN_ODD ? Rasterizer.EOFILL : Rasterizer.NZFILL);
}
r.beginPath();
{
boolean pathClosed = false;
boolean skip = false;
boolean subpathStarted = false;
float mx = 0.0f;
float my = 0.0f;
float[] point = new float[6];
float ax = 0.0f;
float ay = 0.0f;
while (!pi.isDone()) {
int type = pi.currentSegment(point);
if (pathClosed == true) {
pathClosed = false;
if (type != PathIterator.SEG_MOVETO) {
// Force current point back to last moveto point
r.beginSubpath(mx, my);
subpathStarted = true;
}
}
if (normalize) {
int index;
switch(type) {
case PathIterator.SEG_CUBICTO:
index = 4;
break;
case PathIterator.SEG_QUADTO:
index = 2;
break;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
index = 0;
break;
case PathIterator.SEG_CLOSE:
default:
index = -1;
break;
}
if (index >= 0) {
float ox = point[index];
float oy = point[index + 1];
float newax = (float) Math.floor(ox) + 0.5f;
float neway = (float) Math.floor(oy) + 0.5f;
point[index] = newax;
point[index + 1] = neway;
newax -= ox;
neway -= oy;
switch(type) {
case PathIterator.SEG_CUBICTO:
point[0] += ax;
point[1] += ay;
point[2] += newax;
point[3] += neway;
break;
case PathIterator.SEG_QUADTO:
point[0] += (newax + ax) / 2;
point[1] += (neway + ay) / 2;
break;
case PathIterator.SEG_MOVETO:
case PathIterator.SEG_LINETO:
case PathIterator.SEG_CLOSE:
break;
}
ax = newax;
ay = neway;
}
}
switch(type) {
case PathIterator.SEG_MOVETO:
if (point[0] < UPPER_BND && point[0] > LOWER_BND && point[1] < UPPER_BND && point[1] > LOWER_BND) {
mx = point[0];
my = point[1];
r.beginSubpath(mx, my);
subpathStarted = true;
skip = false;
} else {
skip = true;
}
break;
case PathIterator.SEG_LINETO:
/* Checking SEG_LINETO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles
* NaN and Infinity values. Ignoring current path segment
* in case of invalid data. If segment is skipped its
* endpoint (if valid) is used to begin new subpath.
*/
if (point[0] < UPPER_BND && point[0] > LOWER_BND && point[1] < UPPER_BND && point[1] > LOWER_BND) {
if (skip) {
r.beginSubpath(point[0], point[1]);
subpathStarted = true;
skip = false;
} else {
r.appendLine(point[0], point[1]);
}
}
break;
case PathIterator.SEG_QUADTO:
/* Checking SEG_QUADTO coordinates if they are out of the
* [LOWER_BND, UPPER_BND] range. This check also handles
* NaN and Infinity values. Ignoring current path segment
* in case of invalid endpoints's data. Equivalent to the
* SEG_LINETO if endpoint coordinates are valid but there
* are invalid data among other coordinates
*/
if (point[2] < UPPER_BND && point[2] > LOWER_BND && point[3] < UPPER_BND && point[3] > LOWER_BND) {
if (skip) {
r.beginSubpath(point[2], point[3]);
subpathStarted = true;
skip = false;
} else {
if (point[0] < UPPER_BND && point[0] > LOWER_BND && point[1] < UPPER_BND && point[1] > LOWER_BND) {
r.appendQuadratic(point[0], point[1], point[2], point[3]);
} else {
r.appendLine(point[2], point[3]);
}
}
}
break;
case PathIterator.SEG_CUBICTO:
if (point[4] < UPPER_BND && point[4] > LOWER_BND && point[5] < UPPER_BND && point[5] > LOWER_BND) {
if (skip) {
r.beginSubpath(point[4], point[5]);
subpathStarted = true;
skip = false;
} else {
if (point[0] < UPPER_BND && point[0] > LOWER_BND && point[1] < UPPER_BND && point[1] > LOWER_BND && point[2] < UPPER_BND && point[2] > LOWER_BND && point[3] < UPPER_BND && point[3] > LOWER_BND) {
r.appendCubic(point[0], point[1], point[2], point[3], point[4], point[5]);
} else {
r.appendLine(point[4], point[5]);
}
}
}
break;
case PathIterator.SEG_CLOSE:
if (subpathStarted) {
r.closedSubpath();
subpathStarted = false;
pathClosed = true;
}
break;
}
pi.next();
}
}
try {
r.endPath();
r.getAlphaBox(bbox);
clip.clipBoxToBounds(bbox);
if (bbox[0] >= bbox[2] || bbox[1] >= bbox[3]) {
dropRasterizer(r);
return null;
}
r.setOutputArea(bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]);
} catch (PRException e) {
/*
* This exeption is thrown from the native part of the Ductus
* (only in case of a debug build) to indicate that some
* segments of the path have very large coordinates.
* See 4485298 for more info.
*/
System.err.println("DuctusRenderingEngine.getAATileGenerator: " + e);
}
return r;
}
Aggregations