Search in sources :

Example 11 with FitConfiguration

use of uk.ac.sussex.gdsc.smlm.engine.FitConfiguration in project GDSC-SMLM by aherbert.

the class PeakFit method configureFitSolver.

/**
 * Show a dialog to configure the fit solver. The updated settings are saved to the settings file.
 * An error message is shown if the dialog is cancelled or the configuration is invalid.
 *
 * <p>The bounds are used to validate the camera model. The camera model must be large enough to
 * cover the source bounds. If larger then it will be cropped. Optionally an internal region of
 * the input image can be specified. This is relative to the width and height of the input image.
 * If no camera model is present then the bounds can be null.
 *
 * @param config the configuration
 * @param sourceBounds the source image bounds (used to validate the camera model dimensions)
 * @param bounds the crop bounds (relative to the input image, used to validate the camera model
 *        dimensions)
 * @param flags the flags
 * @return True if the configuration succeeded
 */
public static boolean configureFitSolver(FitEngineConfiguration config, Rectangle sourceBounds, Rectangle bounds, int flags) {
    final boolean extraOptions = BitFlagUtils.anySet(flags, FLAG_EXTRA_OPTIONS);
    final boolean ignoreCalibration = BitFlagUtils.anySet(flags, FLAG_IGNORE_CALIBRATION);
    final boolean saveSettings = BitFlagUtils.anyNotSet(flags, FLAG_NO_SAVE);
    final FitConfiguration fitConfig = config.getFitConfiguration();
    final CalibrationWriter calibration = fitConfig.getCalibrationWriter();
    final FitSolver fitSolver = fitConfig.getFitSolver();
    final boolean isLvm = fitSolver == FitSolver.LVM_LSE || fitSolver == FitSolver.LVM_WLSE || fitSolver == FitSolver.LVM_MLE;
    // Support the deprecated backtracking FastMLE solver as a plain FastMLE solver
    final boolean isFastMml = fitSolver == FitSolver.FAST_MLE || fitSolver == FitSolver.BACKTRACKING_FAST_MLE;
    final boolean isSteppingFunctionSolver = isLvm || isFastMml;
    if (fitSolver == FitSolver.MLE) {
        final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
        if (!ignoreCalibration) {
            gd.addMessage("Maximum Likelihood Estimation requires CCD-type camera parameters");
            gd.addNumericField("Camera_bias", calibration.getBias(), 2, 6, "count");
            gd.addCheckbox("Model_camera_noise", fitConfig.isModelCamera());
            gd.addNumericField("Read_noise", calibration.getReadNoise(), 2, 6, "count");
            gd.addNumericField("Quantum_efficiency", calibration.getQuantumEfficiency(), 2, 6, "electron/photon");
            gd.addCheckbox("EM-CCD", calibration.isEmCcd());
        } else {
            gd.addMessage("Maximum Likelihood Estimation requires additional parameters");
        }
        final String[] searchNames = SettingsManager.getSearchMethodNames();
        gd.addChoice("Search_method", searchNames, FitProtosHelper.getName(fitConfig.getSearchMethod()));
        gd.addStringField("Relative_threshold", MathUtils.rounded(fitConfig.getRelativeThreshold()));
        gd.addStringField("Absolute_threshold", MathUtils.rounded(fitConfig.getAbsoluteThreshold()));
        gd.addNumericField("Max_iterations", fitConfig.getMaxIterations(), 0);
        gd.addNumericField("Max_function_evaluations", fitConfig.getMaxFunctionEvaluations(), 0);
        if (extraOptions) {
            gd.addCheckbox("Gradient_line_minimisation", fitConfig.isGradientLineMinimisation());
        }
        gd.showDialog();
        if (gd.wasCanceled()) {
            return false;
        }
        if (!ignoreCalibration) {
            calibration.setBias(Math.abs(gd.getNextNumber()));
            fitConfig.setModelCamera(gd.getNextBoolean());
            calibration.setReadNoise(Math.abs(gd.getNextNumber()));
            calibration.setQuantumEfficiency(Math.abs(gd.getNextNumber()));
            calibration.setCameraType((gd.getNextBoolean()) ? CameraType.EMCCD : CameraType.CCD);
            fitConfig.setCalibration(calibration.getCalibration());
        }
        fitConfig.setSearchMethod(SettingsManager.getSearchMethodValues()[gd.getNextChoiceIndex()]);
        fitConfig.setRelativeThreshold(getThresholdNumber(gd));
        fitConfig.setAbsoluteThreshold(getThresholdNumber(gd));
        fitConfig.setMaxIterations((int) gd.getNextNumber());
        fitConfig.setMaxFunctionEvaluations((int) gd.getNextNumber());
        if (extraOptions) {
            fitConfig.setGradientLineMinimisation(gd.getNextBoolean());
        } else {
            // This option is for the Conjugate Gradient optimiser and makes it less stable
            fitConfig.setGradientLineMinimisation(false);
        }
        if (saveSettings) {
            saveFitEngineSettings(config);
        }
        try {
            ParameterUtils.isAboveZero("Relative threshold", fitConfig.getRelativeThreshold());
            ParameterUtils.isAboveZero("Absolute threshold", fitConfig.getAbsoluteThreshold());
            ParameterUtils.isAboveZero("Max iterations", fitConfig.getMaxIterations());
            ParameterUtils.isAboveZero("Max function evaluations", fitConfig.getMaxFunctionEvaluations());
            fitConfig.getFunctionSolver();
        } catch (final IllegalArgumentException | IllegalStateException ex) {
            IJ.error(TITLE, ex.getMessage());
            return false;
        }
    } else if (isSteppingFunctionSolver) {
        final boolean requireCalibration = !ignoreCalibration && fitSolver != FitSolver.LVM_LSE;
        // Collect options for LVM fitting
        final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
        final String fitSolverName = FitProtosHelper.getName(fitSolver);
        gd.addMessage(fitSolverName + " requires additional parameters");
        gd.addStringField("Relative_threshold", MathUtils.rounded(fitConfig.getRelativeThreshold()));
        gd.addStringField("Absolute_threshold", MathUtils.rounded(fitConfig.getAbsoluteThreshold()));
        gd.addStringField("Parameter_relative_threshold", MathUtils.rounded(fitConfig.getParameterRelativeThreshold()));
        gd.addStringField("Parameter_absolute_threshold", MathUtils.rounded(fitConfig.getParameterAbsoluteThreshold()));
        gd.addNumericField("Max_iterations", fitConfig.getMaxIterations(), 0);
        if (isLvm) {
            gd.addNumericField("Lambda", fitConfig.getLambda(), 4);
        }
        if (isFastMml) {
            gd.addCheckbox("Fixed_iterations", fitConfig.isFixedIterations());
            // This works because the proto configuration enum matches the named enum
            final String[] lineSearchNames = SettingsManager.getNames((Object[]) FastMleSteppingFunctionSolver.LineSearchMethod.values());
            gd.addChoice("Line_search_method", lineSearchNames, lineSearchNames[fitConfig.getLineSearchMethod().getNumber()]);
        }
        gd.addCheckbox("Use_clamping", fitConfig.isUseClamping());
        gd.addCheckbox("Dynamic_clamping", fitConfig.isUseDynamicClamping());
        final PSF psf = fitConfig.getPsf();
        final boolean isAstigmatism = psf.getPsfType() == PSFType.ASTIGMATIC_GAUSSIAN_2D;
        final int nParams = PsfHelper.getParameterCount(psf);
        if (extraOptions) {
            gd.addNumericField("Clamp_background", fitConfig.getClampBackground(), 2);
            gd.addNumericField("Clamp_signal", fitConfig.getClampSignal(), 2);
            gd.addNumericField("Clamp_x", fitConfig.getClampX(), 2);
            gd.addNumericField("Clamp_y", fitConfig.getClampY(), 2);
            if (isAstigmatism) {
                gd.addNumericField("Clamp_z", fitConfig.getClampZ(), 2);
            } else {
                if (nParams > 1 || !fitConfig.isFixedPsf()) {
                    gd.addNumericField("Clamp_sx", fitConfig.getClampXSd(), 2);
                }
                if (nParams > 1) {
                    gd.addNumericField("Clamp_sy", fitConfig.getClampYSd(), 2);
                }
                if (nParams > 2) {
                    gd.addNumericField("Clamp_angle", fitConfig.getClampAngle(), 2);
                }
            }
        }
        // Extra parameters are needed for calibrated fit solvers
        if (requireCalibration) {
            switch(calibration.getCameraType()) {
                case CCD:
                case EMCCD:
                case SCMOS:
                    break;
                default:
                    IJ.error(TITLE, fitSolverName + " requires camera calibration");
                    return false;
            }
            gd.addMessage(fitSolverName + " requires calibration for camera: " + CalibrationProtosHelper.getName(calibration.getCameraType()));
            if (calibration.isScmos()) {
                final String[] models = CameraModelManager.listCameraModels(true);
                gd.addChoice("Camera_model_name", models, fitConfig.getCameraModelName());
            } else {
                gd.addNumericField("Camera_bias", calibration.getBias(), 2, 6, "Count");
                gd.addNumericField("Gain", calibration.getCountPerPhoton(), 2, 6, "Count/photon");
                gd.addNumericField("Read_noise", calibration.getReadNoise(), 2, 6, "Count");
            }
        }
        gd.showDialog();
        if (gd.wasCanceled()) {
            return false;
        }
        fitConfig.setRelativeThreshold(getThresholdNumber(gd));
        fitConfig.setAbsoluteThreshold(getThresholdNumber(gd));
        fitConfig.setParameterRelativeThreshold(getThresholdNumber(gd));
        fitConfig.setParameterAbsoluteThreshold(getThresholdNumber(gd));
        fitConfig.setMaxIterations((int) gd.getNextNumber());
        if (isLvm) {
            fitConfig.setLambda(gd.getNextNumber());
        }
        if (isFastMml) {
            fitConfig.setFixedIterations(gd.getNextBoolean());
            fitConfig.setLineSearchMethod(gd.getNextChoiceIndex());
        }
        fitConfig.setUseClamping(gd.getNextBoolean());
        fitConfig.setUseDynamicClamping(gd.getNextBoolean());
        if (extraOptions) {
            fitConfig.setClampBackground(Math.abs(gd.getNextNumber()));
            fitConfig.setClampSignal(Math.abs(gd.getNextNumber()));
            fitConfig.setClampX(Math.abs(gd.getNextNumber()));
            fitConfig.setClampY(Math.abs(gd.getNextNumber()));
            if (isAstigmatism) {
                fitConfig.setClampZ(Math.abs(gd.getNextNumber()));
            } else {
                if (nParams > 1 || !fitConfig.isFixedPsf()) {
                    fitConfig.setClampXSd(Math.abs(gd.getNextNumber()));
                }
                if (nParams > 1) {
                    fitConfig.setClampYSd(Math.abs(gd.getNextNumber()));
                }
                if (nParams > 2) {
                    fitConfig.setClampAngle(Math.abs(gd.getNextNumber()));
                }
            }
        }
        if (requireCalibration) {
            if (calibration.isScmos()) {
                fitConfig.setCameraModelName(gd.getNextChoice());
            } else {
                calibration.setBias(Math.abs(gd.getNextNumber()));
                calibration.setCountPerPhoton(Math.abs(gd.getNextNumber()));
                calibration.setReadNoise(Math.abs(gd.getNextNumber()));
                fitConfig.setCalibration(calibration.getCalibration());
            }
        }
        // camera model is set.
        if (calibration.isScmos()) {
            fitConfig.setCameraModel(CameraModelManager.load(fitConfig.getCameraModelName()));
            if (!checkCameraModel(fitConfig, sourceBounds, bounds, true)) {
                return false;
            }
        }
        if (saveSettings) {
            saveFitEngineSettings(config);
        }
        try {
            if (isLvm) {
                ParameterUtils.isAboveZero("Lambda", fitConfig.getLambda());
            }
            // This call will check if the configuration is OK (including convergence criteria)
            fitConfig.getFunctionSolver();
        } catch (final IllegalArgumentException | IllegalStateException ex) {
            IJ.error(TITLE, ex.getMessage());
            return false;
        }
    } else {
        IJ.error(TITLE, "Unknown fit solver: " + fitSolver);
        return false;
    }
    if (config.isIncludeNeighbours() && !fitConfig.getFunctionSolver().isBounded()) {
        IJ.error(TITLE, "Including neighbours requires a bounded fit solver");
        return false;
    }
    return true;
}
Also used : FitSolver(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.FitSolver) PSF(uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.PSF) FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) CalibrationWriter(uk.ac.sussex.gdsc.smlm.data.config.CalibrationWriter) ExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog)

Example 12 with FitConfiguration

use of uk.ac.sussex.gdsc.smlm.engine.FitConfiguration in project GDSC-SMLM by aherbert.

the class PeakFit method configureZFilter.

/**
 * Show a dialog to configure the results z filter. The updated settings are saved to the settings
 * file.
 *
 * <p>If the fit configuration PSF is not 3D or the simple filter is disabled then this method
 * returns true. If it is enabled then a dialog is shown to input the configuration for the z
 * filter.
 *
 * <p>Note: The PSF and any z-model must be correctly configured for fitting in pixel units.
 *
 * @param config the config
 * @param flags the flags
 * @return true, if successful
 */
public static boolean configureZFilter(FitEngineConfiguration config, int flags) {
    final FitConfiguration fitConfig = config.getFitConfiguration();
    if (fitConfig.isDisableSimpleFilter() || !fitConfig.is3D()) {
        return true;
    }
    // Create a converter to map the model units in pixels to nm for the dialog.
    // Note the output units of pixels may not yet be set in the calibration so we assume it is
    // pixels.
    final TypeConverter<DistanceUnit> c = UnitConverterUtils.createConverter(DistanceUnit.PIXEL, DistanceUnit.NM, fitConfig.getCalibrationReader().getNmPerPixel());
    final ExtendedGenericDialog gd = new ExtendedGenericDialog(TITLE);
    gd.addMessage("3D filter");
    gd.addNumericField("Min_z", c.convert(fitConfig.getMinZ()), 0, 6, "nm");
    gd.addNumericField("Max_z", c.convert(fitConfig.getMaxZ()), 0, 6, "nm");
    gd.showDialog();
    if (gd.wasCanceled()) {
        return false;
    }
    final double minZ = gd.getNextNumber();
    final double maxZ = gd.getNextNumber();
    if (gd.invalidNumber() || minZ > maxZ) {
        IJ.error(TITLE, "Min Z must be equal or below the max Z");
        return false;
    }
    // Map back
    fitConfig.setMinZ(c.convertBack(minZ));
    fitConfig.setMaxZ(c.convertBack(maxZ));
    if (BitFlagUtils.anyNotSet(flags, FLAG_NO_SAVE)) {
        SettingsManager.writeSettings(config, 0);
    }
    return true;
}
Also used : FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) ExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog) DistanceUnit(uk.ac.sussex.gdsc.smlm.data.config.UnitProtos.DistanceUnit)

Example 13 with FitConfiguration

use of uk.ac.sussex.gdsc.smlm.engine.FitConfiguration in project GDSC-SMLM by aherbert.

the class GaussianFit method runFinal.

/**
 * Perform fitting using the chosen maxima. Update the overlay if successful.
 *
 * @param ip The input image
 */
private void runFinal(ImageProcessor ip) {
    ip.reset();
    final Rectangle bounds = ip.getRoi();
    // Crop to the ROI
    final float[] data = ImageJImageConverter.getData(ip);
    final int width = bounds.width;
    final int height = bounds.height;
    // Sort the maxima
    float[] smoothData = data;
    if (getSmooth() > 0) {
        // Smoothing destructively modifies the data so create a copy
        smoothData = Arrays.copyOf(data, width * height);
        final BlockMeanFilter filter = new BlockMeanFilter();
        if (settings.smooth <= settings.border) {
            filter.stripedBlockFilterInternal(smoothData, width, height, (float) settings.smooth);
        } else {
            filter.stripedBlockFilter(smoothData, width, height, (float) settings.smooth);
        }
    }
    SortUtils.sortIndices(maxIndices, smoothData, true);
    // Show the candidate peaks
    if (maxIndices.length > 0) {
        final String message = String.format("Identified %d peaks", maxIndices.length);
        if (isLogProgress()) {
            IJ.log(message);
            for (final int index : maxIndices) {
                IJ.log(String.format("  %.2f @ [%d,%d]", data[index], bounds.x + index % width, bounds.y + index / width));
            }
        }
        // Check whether to run if the number of peaks is large
        if (maxIndices.length > 10) {
            final GenericDialog gd = new GenericDialog("Warning");
            gd.addMessage(message + "\nDo you want to fit?");
            gd.showDialog();
            if (gd.wasCanceled()) {
                return;
            }
        }
    } else {
        IJ.log("No maxima identified");
        return;
    }
    results = new ImageJTablePeakResults(settings.showDeviations, imp.getTitle() + " [" + imp.getCurrentSlice() + "]");
    final CalibrationWriter cw = new CalibrationWriter();
    cw.setIntensityUnit(IntensityUnit.COUNT);
    cw.setDistanceUnit(DistanceUnit.PIXEL);
    cw.setAngleUnit(AngleUnit.RADIAN);
    results.setCalibration(cw.getCalibration());
    results.setPsf(PsfProtosHelper.getDefaultPsf(getPsfType()));
    results.setShowFittingData(true);
    results.setAngleUnit(AngleUnit.DEGREE);
    results.begin();
    // Perform the Gaussian fit
    long ellapsed = 0;
    final FloatProcessor renderedImage = settings.showFit ? new FloatProcessor(ip.getWidth(), ip.getHeight()) : null;
    if (!settings.singleFit) {
        if (isLogProgress()) {
            IJ.log("Combined fit");
        }
        // Estimate height from smoothed data
        final double[] estimatedHeights = new double[maxIndices.length];
        for (int i = 0; i < estimatedHeights.length; i++) {
            estimatedHeights[i] = smoothData[maxIndices[i]];
        }
        final FitConfiguration config = new FitConfiguration();
        setupPeakFiltering(config);
        final long time = System.nanoTime();
        final double[] params = fitMultiple(data, width, height, maxIndices, estimatedHeights);
        ellapsed = System.nanoTime() - time;
        if (params != null) {
            // Copy all the valid parameters into a new array
            final double[] validParams = new double[params.length];
            int count = 0;
            int validPeaks = 0;
            validParams[count++] = params[0];
            final double[] initialParams = convertParameters(fitResult.getInitialParameters());
            final double[] paramsDev = convertParameters(fitResult.getParameterDeviations());
            final Rectangle regionBounds = new Rectangle();
            final float[] xpoints = new float[maxIndices.length];
            final float[] ypoints = new float[maxIndices.length];
            int npoints = 0;
            for (int i = 1, n = 0; i < params.length; i += Gaussian2DFunction.PARAMETERS_PER_PEAK, n++) {
                final int y = maxIndices[n] / width;
                final int x = maxIndices[n] % width;
                // Check the peak is a good fit
                if (settings.filterResults && config.validatePeak(n, initialParams, params, paramsDev) != FitStatus.OK) {
                    continue;
                }
                if (settings.showFit) {
                    // Copy the valid parameters before there are adjusted to global bounds
                    validPeaks++;
                    for (int ii = i, j = 0; j < Gaussian2DFunction.PARAMETERS_PER_PEAK; ii++, j++) {
                        validParams[count++] = params[ii];
                    }
                }
                final double[] peakParams = extractParams(params, i);
                final double[] peakParamsDev = extractParams(paramsDev, i);
                addResult(bounds, regionBounds, peakParams, peakParamsDev, npoints, x, y, data[maxIndices[n]]);
                // Add fit result to the overlay - Coords are updated with the region offsets in addResult
                final double xf = peakParams[Gaussian2DFunction.X_POSITION];
                final double yf = peakParams[Gaussian2DFunction.Y_POSITION];
                xpoints[npoints] = (float) xf;
                ypoints[npoints] = (float) yf;
                npoints++;
            }
            setOverlay(npoints, xpoints, ypoints);
            // Draw the fit
            if (validPeaks != 0) {
                addToImage(bounds.x, bounds.y, renderedImage, validParams, validPeaks, width, height);
            }
        } else {
            if (isLogProgress()) {
                IJ.log("Failed to fit " + TextUtils.pleural(maxIndices.length, "peak") + ": " + getReason(fitResult));
            }
            imp.setOverlay(null);
        }
    } else {
        if (isLogProgress()) {
            IJ.log("Individual fit");
        }
        int npoints = 0;
        final float[] xpoints = new float[maxIndices.length];
        final float[] ypoints = new float[maxIndices.length];
        // Extract each peak and fit individually
        final ImageExtractor ie = ImageExtractor.wrap(data, width, height);
        float[] region = null;
        final Gaussian2DFitter gf = createGaussianFitter(settings.filterResults);
        double[] validParams = null;
        final ShortProcessor renderedImageCount = settings.showFit ? new ShortProcessor(ip.getWidth(), ip.getHeight()) : null;
        for (int n = 0; n < maxIndices.length; n++) {
            final int y = maxIndices[n] / width;
            final int x = maxIndices[n] % width;
            final long time = System.nanoTime();
            final Rectangle regionBounds = ie.getBoxRegionBounds(x, y, settings.singleRegionSize);
            region = ie.crop(regionBounds, region);
            final int newIndex = (y - regionBounds.y) * regionBounds.width + x - regionBounds.x;
            if (isLogProgress()) {
                IJ.log("Fitting peak " + (n + 1));
            }
            final double[] peakParams = fitSingle(gf, region, regionBounds.width, regionBounds.height, newIndex, smoothData[maxIndices[n]]);
            ellapsed += System.nanoTime() - time;
            // Output fit result
            if (peakParams != null) {
                if (settings.showFit) {
                    // Copy the valid parameters before there are adjusted to global bounds
                    validParams = peakParams.clone();
                }
                double[] peakParamsDev = null;
                if (settings.showDeviations) {
                    peakParamsDev = convertParameters(fitResult.getParameterDeviations());
                }
                addResult(bounds, regionBounds, peakParams, peakParamsDev, n, x, y, data[maxIndices[n]]);
                // Add fit result to the overlay - Coords are updated with the region offsets in addResult
                final double xf = peakParams[Gaussian2DFunction.X_POSITION];
                final double yf = peakParams[Gaussian2DFunction.Y_POSITION];
                xpoints[npoints] = (float) xf;
                ypoints[npoints] = (float) yf;
                npoints++;
                // Draw the fit
                if (settings.showDeviations) {
                    final int ox = bounds.x + regionBounds.x;
                    final int oy = bounds.y + regionBounds.y;
                    addToImage(ox, oy, renderedImage, validParams, 1, regionBounds.width, regionBounds.height);
                    addCount(ox, oy, renderedImageCount, regionBounds.width, regionBounds.height);
                }
            } else if (isLogProgress()) {
                IJ.log("Failed to fit peak " + (n + 1) + ": " + getReason(fitResult));
            }
        }
        // Update the overlay
        if (npoints > 0) {
            setOverlay(npoints, xpoints, ypoints);
        } else {
            imp.setOverlay(null);
        }
        // Create the mean
        if (settings.showFit) {
            for (int i = renderedImageCount.getPixelCount(); i-- > 0; ) {
                final int count = renderedImageCount.get(i);
                if (count > 1) {
                    renderedImage.setf(i, renderedImage.getf(i) / count);
                }
            }
        }
    }
    results.end();
    if (renderedImage != null) {
        ImageJUtils.display(TITLE, renderedImage);
    }
    if (isLogProgress()) {
        IJ.log("Time = " + (ellapsed / 1000000.0) + "ms");
    }
}
Also used : FloatProcessor(ij.process.FloatProcessor) Gaussian2DFitter(uk.ac.sussex.gdsc.smlm.fitting.Gaussian2DFitter) Rectangle(java.awt.Rectangle) ImageJTablePeakResults(uk.ac.sussex.gdsc.smlm.ij.results.ImageJTablePeakResults) ShortProcessor(ij.process.ShortProcessor) BlockMeanFilter(uk.ac.sussex.gdsc.smlm.filters.BlockMeanFilter) FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) ExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog) GenericDialog(ij.gui.GenericDialog) CalibrationWriter(uk.ac.sussex.gdsc.smlm.data.config.CalibrationWriter) ImageExtractor(uk.ac.sussex.gdsc.core.utils.ImageExtractor)

Example 14 with FitConfiguration

use of uk.ac.sussex.gdsc.smlm.engine.FitConfiguration in project GDSC-SMLM by aherbert.

the class BenchmarkFilterAnalysis method updateConfiguration.

/**
 * Updates the given configuration using the latest settings used in benchmarking filtering. The
 * residuals threshold will be copied only if the input FitConfiguration has isComputeResiduals()
 * set to true.
 *
 * <p>This calls {@link FitConfiguration#setDirectFilter(DirectFilter)} and sets the precision
 * method using the method in the direct filter.
 *
 * @param config the configuration
 * @param useLatest Use the latest best filter. Otherwise use the highest scoring.
 * @return true, if successful
 */
public static boolean updateConfiguration(FitEngineConfiguration config, boolean useLatest) {
    final BenchmarkFilterAnalysisResult lastResult = BenchmarkFilterAnalysisResult.lastResult.get();
    if (lastResult.scores.isEmpty()) {
        return false;
    }
    FilterResult best;
    if (useLatest) {
        best = lastResult.scores.get(lastResult.scores.size() - 1);
    } else {
        best = getBestResult(lastResult.scores);
    }
    // New smart filter support
    final FitConfiguration fitConfig = config.getFitConfiguration();
    fitConfig.setDirectFilter(best.getFilter());
    // Set the precision method using the direct filter
    fitConfig.setPrecisionMethod(fitConfig.getFilterPrecisionMethod());
    if (fitConfig.isComputeResiduals()) {
        config.setResidualsThreshold(best.residualsThreshold);
        fitConfig.setComputeResiduals(true);
    } else {
        config.setResidualsThreshold(1);
        fitConfig.setComputeResiduals(false);
    }
    // Note:
    // We leave the simple filter settings alone. These may be enabled as well, e.g. by the
    // BenchmarkSpotFit plugin
    // We could set the fail count range dynamically using a window around the best filter
    config.setFailuresLimit(best.failCount);
    config.setDuplicateDistance(best.duplicateDistance);
    config.setDuplicateDistanceAbsolute(best.duplicateDistanceAbsolute);
    return true;
}
Also used : FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) BenchmarkSpotFilterResult(uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.BenchmarkSpotFilterResult)

Example 15 with FitConfiguration

use of uk.ac.sussex.gdsc.smlm.engine.FitConfiguration in project GDSC-SMLM by aherbert.

the class SpotAnalysis method updateCurrentSlice.

private void updateCurrentSlice(int slice) {
    if (slice != currentSlice) {
        currentSlice = slice;
        final double signal = getSignal(slice);
        final double noise = smoothSd[slice - 1];
        currentLabel.setText(String.format("Frame %d: Signal = %s, SNR = %s", slice, MathUtils.rounded(signal, 4), MathUtils.rounded(signal / noise, 3)));
        drawProfiles();
        // Fit the PSF using a Gaussian
        final FitConfiguration fitConfiguration = new FitConfiguration();
        fitConfiguration.setPsf(PsfProtosHelper.defaultOneAxisGaussian2DPSF);
        fitConfiguration.setFixedPsf(true);
        fitConfiguration.setBackgroundFitting(true);
        fitConfiguration.setSignalStrength(0);
        fitConfiguration.setCoordinateShift(rawImp.getWidth() / 4.0f);
        fitConfiguration.setComputeResiduals(false);
        fitConfiguration.setComputeDeviations(false);
        final Gaussian2DFitter gf = new Gaussian2DFitter(fitConfiguration);
        double[] params = new double[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
        final double psfWidth = Double.parseDouble(widthTextField.getText());
        params[Gaussian2DFunction.BACKGROUND] = smoothMean[slice - 1];
        params[Gaussian2DFunction.SIGNAL] = (gain * signal);
        params[Gaussian2DFunction.X_POSITION] = rawImp.getWidth() / 2.0f;
        params[Gaussian2DFunction.Y_POSITION] = rawImp.getHeight() / 2.0f;
        params[Gaussian2DFunction.X_SD] = params[Gaussian2DFunction.Y_SD] = psfWidth;
        float[] data = (float[]) rawImp.getImageStack().getProcessor(slice).getPixels();
        FitResult fitResult = gf.fit(SimpleArrayUtils.toDouble(data), rawImp.getWidth(), rawImp.getHeight(), 1, params, new boolean[1]);
        if (fitResult.getStatus() == FitStatus.OK) {
            params = fitResult.getParameters();
            final double spotSignal = params[Gaussian2DFunction.SIGNAL] / gain;
            rawFittedLabel.setText(String.format("Raw fit: Signal = %s, SNR = %s", MathUtils.rounded(spotSignal, 4), MathUtils.rounded(spotSignal / noise, 3)));
            ImageRoiPainter.addRoi(rawImp, slice, new OffsetPointRoi(params[Gaussian2DFunction.X_POSITION], params[Gaussian2DFunction.Y_POSITION]));
        } else {
            rawFittedLabel.setText("");
            rawImp.setOverlay(null);
        }
        // Fit the PSF using a Gaussian
        if (blurImp == null) {
            return;
        }
        params = new double[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
        params[Gaussian2DFunction.BACKGROUND] = (float) smoothMean[slice - 1];
        params[Gaussian2DFunction.SIGNAL] = (float) (gain * signal);
        params[Gaussian2DFunction.X_POSITION] = rawImp.getWidth() / 2.0f;
        params[Gaussian2DFunction.Y_POSITION] = rawImp.getHeight() / 2.0f;
        params[Gaussian2DFunction.X_SD] = params[Gaussian2DFunction.Y_SD] = psfWidth;
        data = (float[]) blurImp.getImageStack().getProcessor(slice).getPixels();
        fitResult = gf.fit(SimpleArrayUtils.toDouble(data), rawImp.getWidth(), rawImp.getHeight(), 1, params, new boolean[1]);
        if (fitResult.getStatus() == FitStatus.OK) {
            params = fitResult.getParameters();
            final double spotSignal = params[Gaussian2DFunction.SIGNAL] / gain;
            blurFittedLabel.setText(String.format("Blur fit: Signal = %s, SNR = %s", MathUtils.rounded(spotSignal, 4), MathUtils.rounded(spotSignal / noise, 3)));
            ImageRoiPainter.addRoi(blurImp, slice, new OffsetPointRoi(params[Gaussian2DFunction.X_POSITION], params[Gaussian2DFunction.Y_POSITION]));
        } else {
            blurFittedLabel.setText("");
            blurImp.setOverlay(null);
        }
    }
}
Also used : FitConfiguration(uk.ac.sussex.gdsc.smlm.engine.FitConfiguration) Gaussian2DFitter(uk.ac.sussex.gdsc.smlm.fitting.Gaussian2DFitter) OffsetPointRoi(uk.ac.sussex.gdsc.core.ij.gui.OffsetPointRoi) FitResult(uk.ac.sussex.gdsc.smlm.fitting.FitResult)

Aggregations

FitConfiguration (uk.ac.sussex.gdsc.smlm.engine.FitConfiguration)32 ExtendedGenericDialog (uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog)11 FitEngineConfiguration (uk.ac.sussex.gdsc.smlm.engine.FitEngineConfiguration)9 BasePoint (uk.ac.sussex.gdsc.core.match.BasePoint)8 PeakResultPoint (uk.ac.sussex.gdsc.smlm.results.PeakResultPoint)7 Checkbox (java.awt.Checkbox)6 Rectangle (java.awt.Rectangle)5 CalibrationWriter (uk.ac.sussex.gdsc.smlm.data.config.CalibrationWriter)5 ArrayList (java.util.ArrayList)4 ImageStack (ij.ImageStack)3 TextField (java.awt.TextField)3 ConcurrentRuntimeException (org.apache.commons.lang3.concurrent.ConcurrentRuntimeException)3 StoredDataStatistics (uk.ac.sussex.gdsc.core.utils.StoredDataStatistics)3 PSF (uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.PSF)3 BenchmarkSpotFilterResult (uk.ac.sussex.gdsc.smlm.ij.plugins.benchmark.BenchmarkSpotFilter.BenchmarkSpotFilterResult)3 MemoryPeakResults (uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults)3 TIntObjectHashMap (gnu.trove.map.hash.TIntObjectHashMap)2 Choice (java.awt.Choice)2 LinkedList (java.util.LinkedList)2 List (java.util.List)2