use of uk.ac.sussex.gdsc.core.match.BasePoint in project GDSC-SMLM by aherbert.
the class PsfCreator method combine.
private ExtractedPsf combine(ExtractedPsf[] psfs) {
final ExtractedPsf first = psfs[0];
// PSFs can have different stack sizes. XY size is the same.
// Find the biggest insert before and after the centre to find
// the combined stack size.
int before = first.stackZCentre;
int after = first.psf.length - first.stackZCentre;
for (int i = 1; i < psfs.length; i++) {
before = Math.max(before, psfs[i].stackZCentre);
after = Math.max(after, psfs[i].psf.length - psfs[i].stackZCentre);
}
final int totalDepth = before + after;
final float[][] psf = new float[totalDepth][first.psf[0].length];
final int size = first.maxx;
final int[] count = new int[totalDepth];
for (int i = 0; i < psfs.length; i++) {
final int offset = before - psfs[i].stackZCentre;
for (int j = 0; j < psfs[i].psf.length; j++) {
final float[] from = psfs[i].psf[j];
final float[] to = psf[j + offset];
count[j + offset]++;
for (int k = 0; k < to.length; k++) {
to[k] += from[k];
}
}
}
// Q. Should the normalisation be done?
for (int j = 0; j < psf.length; j++) {
final float[] to = psf[j];
final int c = count[j];
if (c != 0) {
for (int k = 0; k < to.length; k++) {
to[k] /= c;
}
}
}
final BasePoint centre = new BasePoint(size / 2f, size / 2f, before);
final ExtractedPsf combined = new ExtractedPsf(psf, size, centre, first.magnification);
combined.stackZCentre = before;
return combined;
}
use of uk.ac.sussex.gdsc.core.match.BasePoint in project GDSC-SMLM by aherbert.
the class PsfCreator method findSpotOverlap.
/**
* Find all the ROI points that have a box region overlapping with any other spot.
*
* @param roiPoints the roi points
* @param excluded the excluded
* @return the overlap array
*/
private boolean[] findSpotOverlap(BasePoint[] roiPoints, boolean[] excluded) {
final int n = roiPoints.length;
final boolean[] bad = new boolean[n];
if (n == 1) {
return bad;
}
// Check overlap of box regions
final int w = imp.getWidth();
final int h = imp.getHeight();
final ImageExtractor ie = ImageExtractor.wrap(null, w, h);
final Rectangle[] regions = new Rectangle[n];
// Check size if not fitting
final int size = (settings.getMode() != MODE_FITTING) ? 2 * boxRadius + 1 : Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (excluded != null && excluded[i]) {
continue;
}
final Rectangle r = ie.getBoxRegionBounds(roiPoints[i].getXint(), roiPoints[i].getYint(), boxRadius);
regions[i] = r;
if (r.width < size || r.height < size) {
ImageJUtils.log("Warning: Spot %d region extends beyond the image, border pixels will be duplicated", i + 1);
}
}
// Add support for 3D overlap analysis. Only do this if a zRadius has been specified.
final boolean is3D = (settings.getMode() == MODE_ALIGNMENT && zRadius > 0);
for (int i = 0; i < n; i++) {
if (excluded != null && excluded[i]) {
continue;
}
if (bad[i]) {
continue;
}
// Check intersect with others
for (int j = i; ++j < n; ) {
if (excluded != null && excluded[j]) {
continue;
}
boolean overlap = regions[i].intersects(regions[j]);
if (overlap && is3D) {
// Reset (assume non-overlapping)
overlap = false;
// Check for 3D overlap:
// iiiiiiiiiiiiiiiii
// jjjjjjjjjjjjjjjjjjj
final int mini = roiPoints[i].getZint() - zRadius;
final int maxi = roiPoints[i].getZint() + zRadius;
final int minj = roiPoints[j].getZint() - zRadius;
final int maxj = roiPoints[j].getZint() + zRadius;
if (mini <= minj) {
overlap = (maxi >= minj);
} else {
overlap = (maxj >= mini);
}
}
if (overlap) {
ImageJUtils.log("Warning: Spot %d region overlaps with spot %d, ignoring both", i + 1, j + 1);
bad[i] = bad[j] = true;
break;
}
}
}
return bad;
}
use of uk.ac.sussex.gdsc.core.match.BasePoint in project GDSC-SMLM by aherbert.
the class PsfCreator method drawBoundingBox.
private void drawBoundingBox() {
if (plotLock1.acquire()) {
// Get the spots here as the user may want to interactively pick new ones
final BasePoint[] points = getSpots();
final Rectangle[] bounds = new Rectangle[points.length];
final Roi[] rois = new Roi[points.length];
// Run in a new thread to allow the GUI to continue updating
new Thread(() -> {
try {
// Continue while the parameter is changing
while (plotRadius != settings.getRadius()) {
// Store the parameters to be processed
plotRadius = settings.getRadius();
final int boxRadius = (int) Math.ceil(plotRadius);
final int w = 2 * boxRadius + 1;
for (int i = 0; i < points.length; i++) {
final BasePoint p = points[i];
final int cx = p.getXint();
final int cy = p.getYint();
final Roi r = new Roi(cx - plotRadius, cy - plotRadius, w, w);
bounds[i] = r.getBounds();
rois[i] = r;
// Check for overlap
for (int j = i; j-- > 0; ) {
if (bounds[i].intersects(bounds[j])) {
rois[j].setStrokeColor(Color.RED);
r.setStrokeColor(Color.RED);
}
}
}
final Overlay o = new Overlay();
for (final Roi roi : rois) {
o.add(roi);
}
imp.setOverlay(o);
}
} finally {
// Ensure the running flag is reset
plotLock1.release();
}
}).start();
}
}
use of uk.ac.sussex.gdsc.core.match.BasePoint in project GDSC-SMLM by aherbert.
the class SpotFinderPreview method run.
private void run(ImageProcessor ip, MaximaSpotFilter filter) {
if (refreshing) {
return;
}
currentSlice = imp.getCurrentSlice();
final Rectangle bounds = ip.getRoi();
// Crop to the ROI
FloatProcessor fp = ip.crop().toFloat(0, null);
float[] data = (float[]) fp.getPixels();
final int width = fp.getWidth();
final int height = fp.getHeight();
// Store the mean bias and gain of the region data.
// This is used to correctly overlay the filtered data on the original image.
double bias = 0;
double gain = 1;
boolean adjust = false;
// Set weights
final CameraModel cameraModel = fitConfig.getCameraModel();
if (!(cameraModel instanceof FakePerPixelCameraModel)) {
// This should be done on the normalised data
final float[] w = cameraModel.getNormalisedWeights(bounds);
filter.setWeights(w, width, height);
data = data.clone();
if (data.length < ip.getPixelCount()) {
adjust = true;
bias = MathUtils.sum(cameraModel.getBias(bounds)) / data.length;
gain = MathUtils.sum(cameraModel.getGain(bounds)) / data.length;
}
cameraModel.removeBiasAndGain(bounds, data);
}
final Spot[] spots = filter.rank(data, width, height);
data = filter.getPreprocessedData();
final int size = spots.length;
if (topNScrollBar != null) {
topNScrollBar.setMaximum(size);
selectScrollBar.setMaximum(size);
}
fp = new FloatProcessor(width, height, data);
final FloatProcessor out = new FloatProcessor(ip.getWidth(), ip.getHeight());
out.copyBits(ip, 0, 0, Blitter.COPY);
if (adjust) {
fp.multiply(gain);
fp.add(bias);
}
out.insert(fp, bounds.x, bounds.y);
final double min = fp.getMin();
final double max = fp.getMax();
out.setMinAndMax(min, max);
final Overlay o = new Overlay();
o.add(new ImageRoi(0, 0, out));
if (label != null) {
// Get results for frame
final Coordinate[] actual = ResultsMatchCalculator.getCoordinates(actualCoordinates, imp.getCurrentSlice());
final Coordinate[] predicted = new Coordinate[size];
for (int i = 0; i < size; i++) {
predicted[i] = new BasePoint(spots[i].x + bounds.x, spots[i].y + bounds.y);
}
// Compute assignments
final LocalList<FractionalAssignment> fractionalAssignments = new LocalList<>(3 * predicted.length);
final double matchDistance = settings.distance * fitConfig.getInitialPeakStdDev();
final RampedScore score = RampedScore.of(matchDistance, matchDistance * settings.lowerDistance / 100, false);
final double dmin = matchDistance * matchDistance;
final int nActual = actual.length;
final int nPredicted = predicted.length;
for (int j = 0; j < nPredicted; j++) {
// Centre in the middle of the pixel
final float x = predicted[j].getX() + 0.5f;
final float y = predicted[j].getY() + 0.5f;
// Any spots that match
for (int i = 0; i < nActual; i++) {
final double dx = (x - actual[i].getX());
final double dy = (y - actual[i].getY());
final double d2 = dx * dx + dy * dy;
if (d2 <= dmin) {
final double d = Math.sqrt(d2);
final double s = score.score(d);
if (s == 0) {
continue;
}
double distance = 1 - s;
if (distance == 0) {
// In the case of a match below the distance thresholds
// the distance will be 0. To distinguish between candidates all below
// the thresholds just take the closest.
// We know d2 is below dmin so we subtract the delta.
distance -= (dmin - d2);
}
// Store the match
fractionalAssignments.add(new ImmutableFractionalAssignment(i, j, distance, s));
}
}
}
final FractionalAssignment[] assignments = fractionalAssignments.toArray(new FractionalAssignment[0]);
// Compute matches
final RankedScoreCalculator calc = RankedScoreCalculator.create(assignments, nActual - 1, nPredicted - 1);
final boolean save = settings.showTP || settings.showFP;
final double[] calcScore = calc.score(nPredicted, settings.multipleMatches, save);
final ClassificationResult result = RankedScoreCalculator.toClassificationResult(calcScore, nActual);
// Compute AUC and max jaccard (and plot)
final double[][] curve = RankedScoreCalculator.getPrecisionRecallCurve(assignments, nActual, nPredicted);
final double[] precision = curve[0];
final double[] recall = curve[1];
final double[] jaccard = curve[2];
final double auc = AucCalculator.auc(precision, recall);
// Show scores
final String scoreLabel = String.format("Slice=%d, AUC=%s, R=%s, Max J=%s", imp.getCurrentSlice(), MathUtils.rounded(auc), MathUtils.rounded(result.getRecall()), MathUtils.rounded(MathUtils.maxDefault(0, jaccard)));
setLabel(scoreLabel);
// Plot
String title = TITLE + " Performance";
Plot plot = new Plot(title, "Spot Rank", "");
final double[] rank = SimpleArrayUtils.newArray(precision.length, 0, 1.0);
plot.setLimits(0, nPredicted, 0, 1.05);
plot.setColor(Color.blue);
plot.addPoints(rank, precision, Plot.LINE);
plot.setColor(Color.red);
plot.addPoints(rank, recall, Plot.LINE);
plot.setColor(Color.black);
plot.addPoints(rank, jaccard, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, scoreLabel);
final WindowOrganiser windowOrganiser = new WindowOrganiser();
ImageJUtils.display(title, plot, 0, windowOrganiser);
title = TITLE + " Precision-Recall";
plot = new Plot(title, "Recall", "Precision");
plot.setLimits(0, 1, 0, 1.05);
plot.setColor(Color.red);
plot.addPoints(recall, precision, Plot.LINE);
plot.drawLine(recall[recall.length - 1], precision[recall.length - 1], recall[recall.length - 1], 0);
plot.setColor(Color.black);
plot.addLabel(0, 0, scoreLabel);
ImageJUtils.display(title, plot, 0, windowOrganiser);
windowOrganiser.tile();
// Create Rois for TP and FP
if (save) {
final double[] matchScore = RankedScoreCalculator.getMatchScore(calc.getScoredAssignments(), nPredicted);
int matches = 0;
for (int i = 0; i < matchScore.length; i++) {
if (matchScore[i] != 0) {
matches++;
}
}
if (settings.showTP) {
final float[] x = new float[matches];
final float[] y = new float[x.length];
int count = 0;
for (int i = 0; i < matchScore.length; i++) {
if (matchScore[i] != 0) {
final BasePoint p = (BasePoint) predicted[i];
x[count] = p.getX() + 0.5f;
y[count] = p.getY() + 0.5f;
count++;
}
}
addRoi(0, o, x, y, count, Color.green);
}
if (settings.showFP) {
final float[] x = new float[nPredicted - matches];
final float[] y = new float[x.length];
int count = 0;
for (int i = 0; i < matchScore.length; i++) {
if (matchScore[i] == 0) {
final BasePoint p = (BasePoint) predicted[i];
x[count] = p.getX() + 0.5f;
y[count] = p.getY() + 0.5f;
count++;
}
}
addRoi(0, o, x, y, count, Color.red);
}
}
} else {
final WindowOrganiser wo = new WindowOrganiser();
// Option to show the number of neighbours within a set pixel box radius
final int[] count = spotFilterHelper.countNeighbours(spots, width, height, settings.neighbourRadius);
// Show as histogram the totals...
new HistogramPlotBuilder(TITLE, StoredData.create(count), "Neighbours").setIntegerBins(true).setPlotLabel("Radius = " + settings.neighbourRadius).show(wo);
// TODO - Draw n=0, n=1 on the image overlay
final LUT lut = LutHelper.createLut(LutColour.FIRE_LIGHT);
// These are copied by the ROI
final float[] x = new float[1];
final float[] y = new float[1];
// Plot the intensity
final double[] intensity = new double[size];
final double[] rank = SimpleArrayUtils.newArray(size, 1, 1.0);
final int top = (settings.topN > 0) ? settings.topN : size;
final int size_1 = size - 1;
for (int i = 0; i < size; i++) {
intensity[i] = spots[i].intensity;
if (i < top) {
x[0] = spots[i].x + bounds.x + 0.5f;
y[0] = spots[i].y + bounds.y + 0.5f;
final Color c = LutHelper.getColour(lut, size_1 - i, size);
addRoi(0, o, x, y, 1, c, 2, 1);
}
}
final String title = TITLE + " Intensity";
final Plot plot = new Plot(title, "Rank", "Intensity");
plot.setColor(Color.blue);
plot.addPoints(rank, intensity, Plot.LINE);
if (settings.topN > 0 && settings.topN < size) {
plot.setColor(Color.magenta);
plot.drawLine(settings.topN, 0, settings.topN, intensity[settings.topN - 1]);
}
if (settings.select > 0 && settings.select < size) {
plot.setColor(Color.yellow);
final int index = settings.select - 1;
final double in = intensity[index];
plot.drawLine(settings.select, 0, settings.select, in);
x[0] = spots[index].x + bounds.x + 0.5f;
y[0] = spots[index].y + bounds.y + 0.5f;
final Color c = LutHelper.getColour(lut, size_1 - settings.select, size);
addRoi(0, o, x, y, 1, c, 3, 3);
plot.setColor(Color.black);
plot.addLabel(0, 0, "Selected spot intensity = " + MathUtils.rounded(in));
}
ImageJUtils.display(title, plot, 0, wo);
wo.tile();
}
imp.setOverlay(o);
}
use of uk.ac.sussex.gdsc.core.match.BasePoint in project GDSC-SMLM by aherbert.
the class PsfCreator method runUsingFitting.
private void runUsingFitting() {
if (!showFittingDialog()) {
return;
}
if (!loadConfiguration()) {
return;
}
final BasePoint[] spots = getSpots(0, true);
if (spots.length == 0) {
IJ.error(TITLE, "No spots without neighbours within " + (boxRadius * 2) + "px");
return;
}
final ImageStack stack = getImageStack();
final int width = imp.getWidth();
final int height = imp.getHeight();
final int currentSlice = imp.getSlice();
// Adjust settings for a single maxima
config.setIncludeNeighbours(false);
final ArrayList<double[]> centres = new ArrayList<>(spots.length);
final int iterations = 1;
final LoessInterpolator loess = new LoessInterpolator(settings.getSmoothing(), iterations);
// TODO - The fitting routine may not produce many points. In this instance the LOESS
// interpolator
// fails to smooth the data very well. A higher bandwidth helps this but perhaps
// try a different smoothing method.
// For each spot
ImageJUtils.log(TITLE + ": " + imp.getTitle());
ImageJUtils.log("Finding spot locations...");
ImageJUtils.log(" %d spot%s without neighbours within %dpx", spots.length, ((spots.length == 1) ? "" : "s"), (boxRadius * 2));
final StoredDataStatistics averageSd = new StoredDataStatistics();
final StoredDataStatistics averageA = new StoredDataStatistics();
final Statistics averageRange = new Statistics();
final MemoryPeakResults allResults = new MemoryPeakResults();
allResults.setCalibration(fitConfig.getCalibration());
allResults.setPsf(fitConfig.getPsf());
allResults.setName(TITLE);
allResults.setBounds(new Rectangle(0, 0, width, height));
MemoryPeakResults.addResults(allResults);
for (int n = 1; n <= spots.length; n++) {
final BasePoint spot = spots[n - 1];
final int x = (int) spot.getX();
final int y = (int) spot.getY();
final MemoryPeakResults results = fitSpot(stack, width, height, x, y);
allResults.add(results);
if (results.size() < 5) {
ImageJUtils.log(" Spot %d: Not enough fit results %d", n, results.size());
continue;
}
// Get the results for the spot centre and width
final double[] z = new double[results.size()];
final double[] xCoord = new double[z.length];
final double[] yCoord = new double[z.length];
final double[] sd;
final double[] a;
final Counter counter = new Counter();
// We have fit the results so they will be in the preferred units
results.forEach(new PeakResultProcedure() {
@Override
public void execute(PeakResult peak) {
final int i = counter.getAndIncrement();
z[i] = peak.getFrame();
xCoord[i] = peak.getXPosition() - x;
yCoord[i] = peak.getYPosition() - y;
}
});
final WidthResultProcedure wp = new WidthResultProcedure(results, DistanceUnit.PIXEL);
wp.getW();
sd = SimpleArrayUtils.toDouble(wp.wx);
final HeightResultProcedure hp = new HeightResultProcedure(results, IntensityUnit.COUNT);
hp.getH();
a = SimpleArrayUtils.toDouble(hp.heights);
// Smooth the amplitude plot
final double[] smoothA = loess.smooth(z, a);
// Find the maximum amplitude
int maximumIndex = findMaximumIndex(smoothA);
// Find the range at a fraction of the max. This is smoothed to find the X/Y centre
int start = 0;
int stop = smoothA.length - 1;
final double limit = smoothA[maximumIndex] * settings.getAmplitudeFraction();
for (int j = 0; j < smoothA.length; j++) {
if (smoothA[j] > limit) {
start = j;
break;
}
}
for (int j = smoothA.length; j-- > 0; ) {
if (smoothA[j] > limit) {
stop = j;
break;
}
}
averageRange.add(stop - start + 1);
// Extract xy centre coords and smooth
double[] smoothX = new double[stop - start + 1];
double[] smoothY = new double[smoothX.length];
double[] smoothSd = new double[smoothX.length];
final double[] newZ = new double[smoothX.length];
for (int j = start, k = 0; j <= stop; j++, k++) {
smoothX[k] = xCoord[j];
smoothY[k] = yCoord[j];
smoothSd[k] = sd[j];
newZ[k] = z[j];
}
smoothX = loess.smooth(newZ, smoothX);
smoothY = loess.smooth(newZ, smoothY);
smoothSd = loess.smooth(newZ, smoothSd);
// Since the amplitude is not very consistent move from this peak to the
// lowest width which is the in-focus spot.
maximumIndex = findMinimumIndex(smoothSd, maximumIndex - start);
// Find the centre at the amplitude peak
final double cx = smoothX[maximumIndex] + x;
final double cy = smoothY[maximumIndex] + y;
int cz = (int) newZ[maximumIndex];
double csd = smoothSd[maximumIndex];
double ca = smoothA[maximumIndex + start];
// The average should weight the SD using the signal for each spot
averageSd.add(smoothSd[maximumIndex]);
averageA.add(ca);
if (ignoreSpot(n, z, a, smoothA, xCoord, yCoord, sd, newZ, smoothX, smoothY, smoothSd, cx, cy, cz, csd)) {
ImageJUtils.log(" Spot %d was ignored", n);
continue;
}
// Store result - it may have been moved interactively
maximumIndex += this.slice - cz;
cz = (int) newZ[maximumIndex];
csd = smoothSd[maximumIndex];
ca = smoothA[maximumIndex + start];
ImageJUtils.log(" Spot %d => x=%.2f, y=%.2f, z=%d, sd=%.2f, A=%.2f", n, cx, cy, cz, csd, ca);
centres.add(new double[] { cx, cy, cz, csd, n });
}
if (settings.getInteractiveMode()) {
imp.setSlice(currentSlice);
imp.setOverlay(null);
// Hide the amplitude and spot plots
ImageJUtils.hide(TITLE_AMPLITUDE);
ImageJUtils.hide(TITLE_PSF_PARAMETERS);
}
if (centres.isEmpty()) {
final String msg = "No suitable spots could be identified";
ImageJUtils.log(msg);
IJ.error(TITLE, msg);
return;
}
// Find the limits of the z-centre
int minz = (int) centres.get(0)[2];
int maxz = minz;
for (final double[] centre : centres) {
if (minz > centre[2]) {
minz = (int) centre[2];
} else if (maxz < centre[2]) {
maxz = (int) centre[2];
}
}
IJ.showStatus("Creating PSF image");
// Create a stack that can hold all the data.
final ImageStack psf = createStack(stack, minz, maxz, settings.getMagnification());
// For each spot
final Statistics stats = new Statistics();
boolean ok = true;
for (int i = 0; ok && i < centres.size(); i++) {
final double increment = 1.0 / (stack.getSize() * centres.size());
setProgress((double) i / centres.size());
final double[] centre = centres.get(i);
// Extract the spot
final float[][] spot = new float[stack.getSize()][];
Rectangle regionBounds = null;
for (int slice = 1; slice <= stack.getSize(); slice++) {
final ImageExtractor ie = ImageExtractor.wrap((float[]) stack.getPixels(slice), width, height);
if (regionBounds == null) {
regionBounds = ie.getBoxRegionBounds((int) centre[0], (int) centre[1], boxRadius);
}
spot[slice - 1] = ie.crop(regionBounds);
}
if (regionBounds == null) {
// Empty stack
continue;
}
final int n = (int) centre[4];
final float b = getBackground(n, spot);
if (!subtractBackgroundAndWindow(spot, b, regionBounds.width, regionBounds.height, centre, loess)) {
ImageJUtils.log(" Spot %d was ignored", n);
continue;
}
stats.add(b);
// Adjust the centre using the crop
centre[0] -= regionBounds.x;
centre[1] -= regionBounds.y;
// This takes a long time so this should track progress
ok = addToPsf(maxz, settings.getMagnification(), psf, centre, spot, regionBounds, increment, settings.getCentreEachSlice());
}
if (settings.getInteractiveMode()) {
ImageJUtils.hide(TITLE_INTENSITY);
}
IJ.showProgress(1);
if (!ok || stats.getN() == 0) {
return;
}
final double avSd = getAverage(averageSd, averageA, 2);
ImageJUtils.log(" Average background = %.2f, Av. SD = %s px", stats.getMean(), MathUtils.rounded(avSd, 4));
normalise(psf, maxz, avSd * settings.getMagnification(), false);
IJ.showProgress(1);
psfImp = ImageJUtils.display(TITLE_PSF, psf);
psfImp.setSlice(maxz);
psfImp.resetDisplayRange();
psfImp.updateAndDraw();
final double[][] fitCom = new double[2][psf.getSize()];
Arrays.fill(fitCom[0], Double.NaN);
Arrays.fill(fitCom[1], Double.NaN);
final double fittedSd = fitPsf(psf, loess, maxz, averageRange.getMean(), fitCom);
// Compute the drift in the PSF:
// - Use fitted centre if available; otherwise find CoM for each frame
// - express relative to the average centre
final double[][] com = calculateCentreOfMass(psf, fitCom, nmPerPixel / settings.getMagnification());
final double[] slice = SimpleArrayUtils.newArray(psf.getSize(), 1, 1.0);
final String title = TITLE + " CoM Drift";
final Plot plot = new Plot(title, "Slice", "Drift (nm)");
plot.addLabel(0, 0, "Red = X; Blue = Y");
// double[] limitsX = Maths.limits(com[0]);
// double[] limitsY = Maths.limits(com[1]);
final double[] limitsX = getLimits(com[0]);
final double[] limitsY = getLimits(com[1]);
plot.setLimits(1, psf.getSize(), Math.min(limitsX[0], limitsY[0]), Math.max(limitsX[1], limitsY[1]));
plot.setColor(Color.red);
plot.addPoints(slice, com[0], Plot.DOT);
plot.addPoints(slice, loess.smooth(slice, com[0]), Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(slice, com[1], Plot.DOT);
plot.addPoints(slice, loess.smooth(slice, com[1]), Plot.LINE);
ImageJUtils.display(title, plot);
// TODO - Redraw the PSF with drift correction applied.
// This means that the final image should have no drift.
// This is relevant when combining PSF images. It doesn't matter too much for simulations
// unless the drift is large.
// Add Image properties containing the PSF details
final double fwhm = getFwhm(psf, maxz);
psfImp.setProperty("Info", ImagePsfHelper.toString(ImagePsfHelper.create(maxz, nmPerPixel / settings.getMagnification(), settings.getNmPerSlice(), stats.getN(), fwhm, createNote())));
ImageJUtils.log("%s : z-centre = %d, nm/Pixel = %s, nm/Slice = %s, %d images, " + "PSF SD = %s nm, FWHM = %s px\n", psfImp.getTitle(), maxz, MathUtils.rounded(nmPerPixel / settings.getMagnification(), 3), MathUtils.rounded(settings.getNmPerSlice(), 3), stats.getN(), MathUtils.rounded(fittedSd * nmPerPixel, 4), MathUtils.rounded(fwhm));
createInteractivePlots(psf, maxz, nmPerPixel / settings.getMagnification(), fittedSd * nmPerPixel);
IJ.showStatus("");
}
Aggregations