use of uk.ac.sussex.gdsc.smlm.function.StandardGradient1Procedure in project GDSC-SMLM by aherbert.
the class CubicSplineFunctionTest method functionComputesTargetGradient1With2Peaks.
private void functionComputesTargetGradient1With2Peaks(int targetParameter) {
final int gradientIndex = findGradientIndex(f2, targetParameter);
final Statistics s = new Statistics();
final StandardValueProcedure p1a = new StandardValueProcedure();
final StandardValueProcedure p1b = new StandardValueProcedure();
final StandardGradient1Procedure p2 = new StandardGradient1Procedure();
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double cz1 : testcz1) {
// Peak 2
for (final double signal2 : testsignal2) {
for (final double cx2 : testcx2) {
for (final double cy2 : testcy2) {
for (final double cz2 : testcz2) {
final double[] a = createParameters(background, signal1, cx1, cy1, cz1, signal2, cx2, cy2, cz2);
// System.out.println(java.util.Arrays.toString(a));
// Evaluate all gradients
p2.getValues(f2, a);
// Numerically solve gradient.
// Calculate the step size h to be an exact numerical representation
final double xx = a[targetParameter];
// Get h to minimise roundoff error
final double h = Precision.representableDelta(xx, stepH);
// Evaluate at (x+h) and (x-h)
a[targetParameter] = xx + h;
p1a.getValues(f2, a);
a[targetParameter] = xx - h;
p1b.getValues(f2, a);
// Only test close to the XY centre
for (final int x : testx) {
for (final int y : testy) {
final int i = y * maxx + x;
final double high = p1a.values[i];
final double low = p1b.values[i];
final double gradient = (high - low) / (2 * h);
final double dyda = p2.gradients[i][gradientIndex];
final double error = DoubleEquality.relativeError(gradient, dyda);
s.add(error);
Assertions.assertTrue((gradient * dyda) >= 0, () -> String.format("%s sign != %s", gradient, dyda));
// logger.fine(FunctionUtils.getSupplier("[%d,%d] %f == [%d] %f? (%g)", x,
// y, gradient, gradientIndex, dyda, error);
Assertions.assertTrue(eq.almostEqualRelativeOrAbsolute(gradient, dyda), () -> String.format("%s != %s", gradient, dyda));
}
}
}
}
}
}
}
}
}
}
}
logger.info(() -> {
return String.format("functionComputesTargetGradient1With2Peaks %s %s (error %s +/- %s)", f1.getClass().getSimpleName(), CubicSplineFunction.getName(targetParameter), MathUtils.rounded(s.getMean()), MathUtils.rounded(s.getStandardDeviation()));
});
}
use of uk.ac.sussex.gdsc.smlm.function.StandardGradient1Procedure in project GDSC-SMLM by aherbert.
the class CubicSplineFunctionTest method functionComputesTargetGradient1.
private void functionComputesTargetGradient1(int targetParameter) {
final int gradientIndex = findGradientIndex(f1, targetParameter);
final Statistics s = new Statistics();
final StandardValueProcedure p1a = new StandardValueProcedure();
final StandardValueProcedure p1b = new StandardValueProcedure();
final StandardGradient1Procedure p2 = new StandardGradient1Procedure();
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double cz1 : testcz1) {
final double[] a = createParameters(background, signal1, cx1, cy1, cz1);
// System.out.println(java.util.Arrays.toString(a));
// Evaluate all gradients
p2.getValues(f1, a);
// Numerically solve gradient.
// Calculate the step size h to be an exact numerical representation
final double xx = a[targetParameter];
// Get h to minimise roundoff error
final double h = Precision.representableDelta(xx, stepH);
// Evaluate at (x+h) and (x-h)
a[targetParameter] = xx + h;
p1a.getValues(f1, a);
a[targetParameter] = xx - h;
p1b.getValues(f1, a);
// Only test close to the XY centre
for (final int x : testx) {
for (final int y : testy) {
final int i = y * maxx + x;
final double high = p1a.values[i];
final double low = p1b.values[i];
final double gradient = (high - low) / (2 * h);
final double dyda = p2.gradients[i][gradientIndex];
final double error = DoubleEquality.relativeError(gradient, dyda);
s.add(error);
if ((gradient * dyda) < 0) {
Assertions.fail(String.format("%s sign != %s", gradient, dyda));
}
// gradient, gradientIndex, dyda, error);
if (!eq.almostEqualRelativeOrAbsolute(gradient, dyda)) {
Assertions.fail(String.format("%s != %s", gradient, dyda));
}
}
}
}
}
}
}
}
logger.info(() -> {
return String.format("functionComputesTargetGradient1 %s %s (error %s +/- %s)", f1.getClass().getSimpleName(), CubicSplineFunction.getName(targetParameter), MathUtils.rounded(s.getMean()), MathUtils.rounded(s.getStandardDeviation()));
});
}
use of uk.ac.sussex.gdsc.smlm.function.StandardGradient1Procedure in project GDSC-SMLM by aherbert.
the class CubicSplineFunctionTest method functionComputesTargetGradient2With2Peaks.
private void functionComputesTargetGradient2With2Peaks(int targetParameter) {
final int gradientIndex = findGradientIndex(f2, targetParameter);
final Statistics s = new Statistics();
final StandardGradient1Procedure p1a = new StandardGradient1Procedure();
final StandardGradient1Procedure p1b = new StandardGradient1Procedure();
final StandardGradient2Procedure p2 = new StandardGradient2Procedure();
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double cz1 : testcz1) {
// Peak 2
for (final double signal2 : testsignal2) {
for (final double cx2 : testcx2) {
for (final double cy2 : testcy2) {
for (final double cz2 : testcz2) {
final double[] a = createParameters(background, signal1, cx1, cy1, cz1, signal2, cx2, cy2, cz2);
// System.out.println(java.util.Arrays.toString(a));
f2.initialise2(a);
final boolean test = !f2.isNodeBoundary(gradientIndex);
// Comment out when printing errors
if (!test) {
continue;
}
// Evaluate all gradients
p2.getValues(f2, a);
// Numerically solve gradient.
// Calculate the step size h to be an exact numerical representation
final double xx = a[targetParameter];
// Get h to minimise roundoff error
final double h = Precision.representableDelta(xx, stepH);
// Evaluate at (x+h) and (x-h)
a[targetParameter] = xx + h;
p1a.getValues(f2, a);
a[targetParameter] = xx - h;
p1b.getValues(f2, a);
// Only test close to the XY centre
for (final int x : testx) {
for (final int y : testy) {
final int i = y * maxx + x;
final double high = p1a.gradients[i][gradientIndex];
final double low = p1b.gradients[i][gradientIndex];
final double gradient = (high - low) / (2 * h);
final double d2yda2 = p2.gradients2[i][gradientIndex];
final double error = DoubleEquality.relativeError(gradient, d2yda2);
// y, gradient, gradientIndex, d2yda2, error);
if (test) {
s.add(error);
if ((gradient * d2yda2) < 0) {
Assertions.fail(String.format("%s sign != %s", gradient, d2yda2));
}
// x, y, gradient, gradientIndex, d2yda2, error);
if (!eq.almostEqualRelativeOrAbsolute(gradient, d2yda2)) {
Assertions.fail(String.format("%s != %s", gradient, d2yda2));
}
}
}
}
}
}
}
}
}
}
}
}
}
logger.info(() -> {
return String.format("functionComputesTargetGradient2With2Peaks %s %s (error %s +/- %s)", f1.getClass().getSimpleName(), CubicSplineFunction.getName(targetParameter), MathUtils.rounded(s.getMean()), MathUtils.rounded(s.getStandardDeviation()));
});
}
use of uk.ac.sussex.gdsc.smlm.function.StandardGradient1Procedure in project GDSC-SMLM by aherbert.
the class CubicSplineFunctionTest method functionComputesTargetWithAndWithoutGradientWith2Peaks.
@Test
void functionComputesTargetWithAndWithoutGradientWith2Peaks() {
if (f2 == null) {
return;
}
final StandardValueProcedure p0 = new StandardValueProcedure();
final StandardGradient1Procedure p1 = new StandardGradient1Procedure();
final StandardGradient2Procedure p2 = new StandardGradient2Procedure();
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double cz1 : testcz1) {
// Peak 2
for (final double signal2 : testsignal2) {
for (final double cx2 : testcx2) {
for (final double cy2 : testcy2) {
for (final double cz2 : testcz2) {
final double[] a = createParameters(background, signal1, cx1, cy1, cz1, signal2, cx2, cy2, cz2);
final double[] e = p0.getValues(f1, a);
final double[] o1 = p1.getValues(f1, a);
final double[] o2 = p2.getValues(f1, a);
Assertions.assertArrayEquals(e, o1);
Assertions.assertArrayEquals(e, o2);
for (int i = e.length; i-- > 0; ) {
Assertions.assertArrayEquals(p1.gradients[i], p2.gradients1[i]);
}
}
}
}
}
}
}
}
}
}
}
use of uk.ac.sussex.gdsc.smlm.function.StandardGradient1Procedure in project GDSC-SMLM by aherbert.
the class CubicSplineFunctionTest method functionComputesTargetWithAndWithoutGradient.
@Test
void functionComputesTargetWithAndWithoutGradient() {
final StandardValueProcedure p0 = new StandardValueProcedure();
final StandardGradient1Procedure p1 = new StandardGradient1Procedure();
final StandardGradient2Procedure p2 = new StandardGradient2Procedure();
for (final double background : testbackground) {
// Peak 1
for (final double signal1 : testsignal1) {
for (final double cx1 : testcx1) {
for (final double cy1 : testcy1) {
for (final double cz1 : testcz1) {
final double[] a = createParameters(background, signal1, cx1, cy1, cz1);
final double[] e = p0.getValues(f1, a);
final double[] o1 = p1.getValues(f1, a);
final double[] o2 = p2.getValues(f1, a);
Assertions.assertArrayEquals(e, o1);
Assertions.assertArrayEquals(e, o2);
for (int i = e.length; i-- > 0; ) {
Assertions.assertArrayEquals(p1.gradients[i], p2.gradients1[i]);
}
}
}
}
}
}
}
Aggregations