use of uk.ac.sussex.gdsc.smlm.function.gaussian.SingleFreeCircularGaussian2DFunction in project GDSC-SMLM by aherbert.
the class SolverSpeedTest method createSolverData.
private static boolean createSolverData(UniformRandomProvider rand, float[][] alpha, float[] beta, boolean positiveDifinite) {
// Generate a 2D Gaussian
final SingleFreeCircularGaussian2DFunction func = new SingleFreeCircularGaussian2DFunction(10, 10);
final double[] params = new double[1 + Gaussian2DFunction.PARAMETERS_PER_PEAK];
params[Gaussian2DFunction.BACKGROUND] = 2 + rand.nextDouble() * 2;
params[Gaussian2DFunction.SIGNAL] = 100 + rand.nextDouble() * 5;
params[Gaussian2DFunction.X_POSITION] = 4.5 + rand.nextDouble();
params[Gaussian2DFunction.Y_POSITION] = 4.5 + rand.nextDouble();
params[Gaussian2DFunction.X_SD] = 1 + rand.nextDouble();
params[Gaussian2DFunction.Y_SD] = 1 + rand.nextDouble();
params[Gaussian2DFunction.ANGLE] = rand.nextDouble();
final int[] x = new int[100];
final double[] y = new double[100];
func.initialise(params);
for (int i = 0; i < x.length; i++) {
// Add random noise
y[i] = func.eval(i) + ((rand.nextDouble() < 0.5) ? -rand.nextDouble() * 5 : rand.nextDouble() * 5);
}
// Randomise parameters
for (int i = 0; i < params.length; i++) {
params[i] += (rand.nextDouble() < 0.5) ? -rand.nextDouble() : rand.nextDouble();
}
// Compute the Hessian and parameter gradient vector
final GradientCalculator calc = new GradientCalculator(6);
final double[][] alpha2 = new double[6][6];
final double[] beta2 = new double[6];
calc.findLinearised(y.length, y, params, alpha2, beta2, func);
// Update the Hessian using a lambda shift
final double lambda = 1.001;
for (int i = 0; i < alpha2.length; i++) {
alpha2[i][i] *= lambda;
}
// Copy back
for (int i = 0; i < beta.length; i++) {
beta[i] = (float) beta2[i];
for (int j = 0; j < beta.length; j++) {
alpha[i][j] = (float) alpha2[i][j];
}
}
// Check for a positive definite matrix
if (positiveDifinite) {
final EjmlLinearSolver solver = new EjmlLinearSolver();
return solver.solveCholeskyLdlT(copydouble(alpha), copydouble(beta));
}
return true;
}
use of uk.ac.sussex.gdsc.smlm.function.gaussian.SingleFreeCircularGaussian2DFunction in project GDSC-SMLM by aherbert.
the class GradientCalculatorSpeedTest method gradientCalculatorAssumedXIsFasterThanGradientCalculator.
@SeededTest
void gradientCalculatorAssumedXIsFasterThanGradientCalculator(RandomSeed seed) {
Assumptions.assumeTrue(TestSettings.allow(TestComplexity.MEDIUM));
final int iter = 10000;
final ArrayList<double[]> paramsList = new ArrayList<>(iter);
final ArrayList<double[]> yList = new ArrayList<>(iter);
final int[] x = createData(RngUtils.create(seed.getSeed()), 1, iter, paramsList, yList);
final GradientCalculator calc = new GradientCalculator6();
final GradientCalculator calc2 = new GradientCalculator6();
final SingleFreeCircularGaussian2DFunction func = new SingleFreeCircularGaussian2DFunction(blockWidth, blockWidth);
final int n = x.length;
final int ng = func.getNumberOfGradients();
final double[][] alpha = new double[ng][ng];
final double[] beta = new double[ng];
for (int i = 0; i < paramsList.size(); i++) {
calc.findLinearised(x, yList.get(i), paramsList.get(i), alpha, beta, func);
}
for (int i = 0; i < paramsList.size(); i++) {
calc2.findLinearised(n, yList.get(i), paramsList.get(i), alpha, beta, func);
}
long start1 = System.nanoTime();
for (int i = 0; i < paramsList.size(); i++) {
calc.findLinearised(x, yList.get(i), paramsList.get(i), alpha, beta, func);
}
start1 = System.nanoTime() - start1;
long start2 = System.nanoTime();
for (int i = 0; i < paramsList.size(); i++) {
calc2.findLinearised(n, yList.get(i), paramsList.get(i), alpha, beta, func);
}
start2 = System.nanoTime() - start2;
logger.log(TestLogUtils.getTimingRecord("GradientCalculator", start1, "GradientCalculatorAssumed", start2));
}
Aggregations