use of beast.evolution.alignment.TaxonSet in project beast2 by CompEvol.
the class BeautiDoc method createTaxonSet.
/**
* create taxonset, one taxon for each sequence in the alignment
* and assign taxonset to the alignment
* *
*/
static void createTaxonSet(Alignment a, BeautiDoc doc) {
List<String> taxaNames = a.getTaxaNames();
TaxonSet taxonset = new TaxonSet();
for (final String taxaName : taxaNames) {
taxonset.taxonsetInput.get().add(doc.getTaxon(taxaName));
}
taxonset.setID("TaxonSet0." + a.getID());
try {
taxonset.initAndValidate();
} catch (Exception e) {
e.printStackTrace();
}
doc.registerPlugin(taxonset);
}
use of beast.evolution.alignment.TaxonSet in project beast2 by CompEvol.
the class RandomTree method initStateNodes.
// taxonset intersection test
// private boolean intersects(final BitSet bitSet, final BitSet bitSet2) {
// for (int k = bitSet.nextSetBit(0); k >= 0; k = bitSet.nextSetBit(k + 1)) {
// if (bitSet2.get(k)) {
// return true;
// }
// }
// return false;
// }
// returns true if bitSet is a subset of bitSet2
// private boolean isSubset(final BitSet bitSet, final BitSet bitSet2) {
// boolean isSubset = true;
// for (int k = bitSet.nextSetBit(0); isSubset && k >= 0; k = bitSet.nextSetBit(k + 1)) {
// isSubset = bitSet2.get(k);
// }
// return isSubset;
// }
@SuppressWarnings("unchecked")
@Override
public void initStateNodes() {
// find taxon sets we are dealing with
taxonSets = new ArrayList<>();
m_bounds = new ArrayList<>();
distributions = new ArrayList<>();
taxonSetIDs = new ArrayList<>();
lastMonophyletic = 0;
if (taxaInput.get() != null) {
taxa.addAll(taxaInput.get().getTaxaNames());
} else {
taxa.addAll(m_taxonset.get().asStringList());
}
// pick up constraints from outputs, m_inititial input tree and output tree, if any
List<MRCAPrior> calibrations = new ArrayList<>();
calibrations.addAll(calibrationsInput.get());
// pick up constraints in m_initial tree
for (final Object beastObject : getOutputs()) {
if (beastObject instanceof MRCAPrior && !calibrations.contains(beastObject)) {
calibrations.add((MRCAPrior) beastObject);
}
}
if (m_initial.get() != null) {
for (final Object beastObject : m_initial.get().getOutputs()) {
if (beastObject instanceof MRCAPrior && !calibrations.contains(beastObject)) {
calibrations.add((MRCAPrior) beastObject);
}
}
}
for (final MRCAPrior prior : calibrations) {
final TaxonSet taxonSet = prior.taxonsetInput.get();
if (taxonSet != null && !prior.onlyUseTipsInput.get()) {
final Set<String> usedTaxa = new LinkedHashSet<>();
if (taxonSet.asStringList() == null) {
taxonSet.initAndValidate();
}
for (final String taxonID : taxonSet.asStringList()) {
if (!taxa.contains(taxonID)) {
throw new IllegalArgumentException("Taxon <" + taxonID + "> could not be found in list of taxa. Choose one of " + taxa);
}
usedTaxa.add(taxonID);
}
final ParametricDistribution distr = prior.distInput.get();
final Bound bounds = new Bound();
if (distr != null) {
List<BEASTInterface> beastObjects = new ArrayList<>();
distr.getPredecessors(beastObjects);
for (int i = beastObjects.size() - 1; i >= 0; i--) {
beastObjects.get(i).initAndValidate();
}
try {
bounds.lower = distr.inverseCumulativeProbability(0.0) + distr.offsetInput.get();
bounds.upper = distr.inverseCumulativeProbability(1.0) + distr.offsetInput.get();
} catch (MathException e) {
Log.warning.println("At RandomTree::initStateNodes, bound on MRCAPrior could not be set " + e.getMessage());
}
}
if (prior.isMonophyleticInput.get()) {
// add any monophyletic constraint
taxonSets.add(lastMonophyletic, usedTaxa);
distributions.add(lastMonophyletic, distr);
m_bounds.add(lastMonophyletic, bounds);
taxonSetIDs.add(prior.getID());
lastMonophyletic++;
} else {
// only calibrations with finite bounds are added
if (!Double.isInfinite(bounds.lower) || !Double.isInfinite(bounds.upper)) {
taxonSets.add(usedTaxa);
distributions.add(distr);
m_bounds.add(bounds);
taxonSetIDs.add(prior.getID());
}
}
}
}
// assume all calibration constraints are MonoPhyletic
// TODO: verify that this is a reasonable assumption
lastMonophyletic = taxonSets.size();
// sort constraints such that if taxon set i is subset of taxon set j, then i < j
for (int i = 0; i < lastMonophyletic; i++) {
for (int j = i + 1; j < lastMonophyletic; j++) {
Set<String> intersection = new LinkedHashSet<>(taxonSets.get(i));
intersection.retainAll(taxonSets.get(j));
if (intersection.size() > 0) {
final boolean isSubset = taxonSets.get(i).containsAll(taxonSets.get(j));
final boolean isSubset2 = taxonSets.get(j).containsAll(taxonSets.get(i));
// o taxonset1 does not intersect taxonset2
if (!(isSubset || isSubset2)) {
throw new IllegalArgumentException("333: Don't know how to generate a Random Tree for taxon sets that intersect, " + "but are not inclusive. Taxonset " + taxonSetIDs.get(i) + " and " + taxonSetIDs.get(j));
}
// swap i & j if b1 subset of b2
if (isSubset) {
swap(taxonSets, i, j);
swap(distributions, i, j);
swap(m_bounds, i, j);
swap(taxonSetIDs, i, j);
}
}
}
}
// build tree of mono constraints such that j is parent of i if i is a subset of j but i+1,i+2,...,j-1 are not.
// The last one, standing for the virtual "root" of all monophyletic clades is not associated with an actual clade
final int[] parent = new int[lastMonophyletic];
children = new List[lastMonophyletic + 1];
for (int i = 0; i < lastMonophyletic + 1; i++) {
children[i] = new ArrayList<>();
}
for (int i = 0; i < lastMonophyletic; i++) {
int j = i + 1;
while (j < lastMonophyletic && !taxonSets.get(j).containsAll(taxonSets.get(i))) {
j++;
}
parent[i] = j;
children[j].add(i);
}
// make sure upper bounds of a child does not exceed the upper bound of its parent
for (int i = lastMonophyletic - 1; i >= 0; --i) {
if (parent[i] < lastMonophyletic) {
if (m_bounds.get(i).upper > m_bounds.get(parent[i]).upper) {
m_bounds.get(i).upper = m_bounds.get(parent[i]).upper - 1e-100;
}
}
}
final PopulationFunction popFunction = populationFunctionInput.get();
simulateTree(taxa, popFunction);
if (rootHeightInput.get() != null) {
scaleToFit(rootHeightInput.get() / root.getHeight(), root);
}
nodeCount = 2 * taxa.size() - 1;
internalNodeCount = taxa.size() - 1;
leafNodeCount = taxa.size();
HashMap<String, Integer> taxonToNR = null;
// preserve node numbers where possible
if (m_initial.get() != null) {
if (leafNodeCount == m_initial.get().getLeafNodeCount()) {
// dont ask me how the initial tree is rubbish (i.e. 0:0.0)
taxonToNR = new HashMap<>();
for (Node n : m_initial.get().getExternalNodes()) {
taxonToNR.put(n.getID(), n.getNr());
}
}
} else {
taxonToNR = new HashMap<>();
String[] taxa = getTaxaNames();
for (int k = 0; k < taxa.length; ++k) {
taxonToNR.put(taxa[k], k);
}
}
// multiple simulation tries may produce an excess of nodes with invalid nr's. reset those.
setNodesNrs(root, 0, new int[1], taxonToNR);
initArrays();
if (m_initial.get() != null) {
m_initial.get().assignFromWithoutID(this);
}
for (int k = 0; k < lastMonophyletic; ++k) {
final MRCAPrior p = calibrations.get(k);
if (p.isMonophyleticInput.get()) {
final TaxonSet taxonSet = p.taxonsetInput.get();
if (taxonSet == null) {
throw new IllegalArgumentException("Something is wrong with constraint " + p.getID() + " -- a taxonset must be specified if a monophyletic constraint is enforced.");
}
final Set<String> usedTaxa = new LinkedHashSet<>();
if (taxonSet.asStringList() == null) {
taxonSet.initAndValidate();
}
usedTaxa.addAll(taxonSet.asStringList());
/* int c = */
traverse(root, usedTaxa, taxonSet.getTaxonCount(), new int[1]);
// boolean b = c == nrOfTaxa + 127;
}
}
}
use of beast.evolution.alignment.TaxonSet in project beast2 by CompEvol.
the class CalibratedYuleModel method initAndValidate.
@Override
public void initAndValidate() {
super.initAndValidate();
type = correctionTypeInput.get();
final TreeInterface tree = treeInput.get();
// shallow copy. we shall change cals later
final List<CalibrationPoint> cals = new ArrayList<>(calibrationsInput.get());
int calCount = cals.size();
final List<TaxonSet> taxaSets = new ArrayList<>(calCount);
if (cals.size() > 0) {
xclades = new int[calCount][];
// convenience
for (final CalibrationPoint cal : cals) {
taxaSets.add(cal.taxa());
}
} else {
// find calibration points from prior
for (final Object beastObject : getOutputs()) {
if (beastObject instanceof CompoundDistribution) {
final CompoundDistribution prior = (CompoundDistribution) beastObject;
for (final Distribution distr : prior.pDistributions.get()) {
if (distr instanceof MRCAPrior) {
final MRCAPrior _MRCAPrior = (MRCAPrior) distr;
// make sure MRCAPrior is monophyletic
if (_MRCAPrior.distInput.get() != null) {
// make sure MRCAPrior is monophyletic
if (!_MRCAPrior.isMonophyleticInput.get()) {
throw new IllegalArgumentException("MRCAPriors must be monophyletic for Calibrated Yule prior");
}
// create CalibrationPoint from MRCAPrior
final CalibrationPoint cal = new CalibrationPoint();
cal.distInput.setValue(_MRCAPrior.distInput.get(), cal);
cal.taxonsetInput.setValue(_MRCAPrior.taxonsetInput.get(), cal);
cal.forParentInput.setValue(_MRCAPrior.useOriginateInput.get(), cal);
cal.initAndValidate();
cals.add(cal);
taxaSets.add(cal.taxa());
cal.taxa().initAndValidate();
calCount++;
calcCalibrations = false;
} else {
if (_MRCAPrior.isMonophyleticInput.get()) {
Log.warning.println("WARNING: MRCAPriors (" + _MRCAPrior.getID() + ") must have a distribution when monophyletic. Ignored for Calibrated Yule prior");
} else {
Log.warning.println("WARNING: MRCAPriors (" + _MRCAPrior.getID() + ") found that is not monophyletic. Ignored for Calibrated Yule prior");
}
}
}
}
}
}
xclades = new int[calCount][];
}
if (calCount == 0) {
Log.warning.println("WARNING: Calibrated Yule prior could not find any properly configured calibrations. Expect this to crash in a BEAST run.");
// assume we are in beauti, back off for now
return;
}
for (int k = 0; k < calCount; ++k) {
final TaxonSet tk = taxaSets.get(k);
for (int i = k + 1; i < calCount; ++i) {
final TaxonSet ti = taxaSets.get(i);
if (ti.containsAny(tk)) {
if (!(ti.containsAll(tk) || tk.containsAll(ti))) {
throw new IllegalArgumentException("Overlapping taxaSets??");
}
}
}
}
orderedCalibrations = new CalibrationPoint[calCount];
{
int loc = taxaSets.size() - 1;
while (loc >= 0) {
assert loc == taxaSets.size() - 1;
// place maximal taxaSets at end one at a time
int k = 0;
for (; /**/
k < taxaSets.size(); ++k) {
if (isMaximal(taxaSets, k)) {
break;
}
}
final List<String> tk = taxaSets.get(k).asStringList();
final int tkcount = tk.size();
this.xclades[loc] = new int[tkcount];
for (int nt = 0; nt < tkcount; ++nt) {
final int taxonIndex = getTaxonIndex(tree, tk.get(nt));
this.xclades[loc][nt] = taxonIndex;
if (taxonIndex < 0) {
throw new IllegalArgumentException("Taxon not found in tree: " + tk.get(nt));
}
}
orderedCalibrations[loc] = cals.remove(k);
taxaSets.remove(k);
// cals and taxaSets should match
--loc;
}
}
// tio[i] will contain all taxaSets contained in the i'th clade, in the form of thier index into orderedCalibrations
@SuppressWarnings("unchecked") final List<Integer>[] tio = new List[orderedCalibrations.length];
for (int k = 0; k < orderedCalibrations.length; ++k) {
tio[k] = new ArrayList<>();
}
for (int k = 0; k < orderedCalibrations.length; ++k) {
final TaxonSet txk = orderedCalibrations[k].taxa();
for (int i = k + 1; i < orderedCalibrations.length; ++i) {
if (orderedCalibrations[i].taxa().containsAll(txk)) {
tio[i].add(k);
break;
}
}
}
this.taxaPartialOrder = new int[orderedCalibrations.length][];
for (int k = 0; k < orderedCalibrations.length; ++k) {
final List<Integer> tiok = tio[k];
this.taxaPartialOrder[k] = new int[tiok.size()];
for (int j = 0; j < tiok.size(); ++j) {
this.taxaPartialOrder[k][j] = tiok.get(j);
}
}
// true if clade is not contained in any other clade
final boolean[] maximal = new boolean[calCount];
for (int k = 0; k < calCount; ++k) {
maximal[k] = true;
}
for (int k = 0; k < calCount; ++k) {
for (final int i : this.taxaPartialOrder[k]) {
maximal[i] = false;
}
}
userPDF = userMarInput.get();
if (userPDF == null) {
if (type == Type.OVER_ALL_TOPOS) {
if (calCount == 1) {
// closed form formula
} else {
boolean anyParent = false;
for (final CalibrationPoint c : orderedCalibrations) {
if (c.forParentInput.get()) {
anyParent = true;
}
}
if (anyParent) {
throw new IllegalArgumentException("Sorry, not implemented: calibration on parent for more than one clade.");
}
if (calCount == 2 && orderedCalibrations[1].taxa().containsAll(orderedCalibrations[0].taxa())) {
// closed form formulas
} else {
setUpTables(tree.getLeafNodeCount() + 1);
linsIter = new CalibrationLineagesIterator(this.xclades, this.taxaPartialOrder, maximal, tree.getLeafNodeCount());
lastHeights = new double[calCount];
}
}
} else if (type == Type.OVER_RANKED_COUNTS) {
setUpTables(tree.getLeafNodeCount() + 1);
}
}
final List<Node> leafs = tree.getExternalNodes();
final double height = leafs.get(0).getHeight();
for (final Node leaf : leafs) {
if (Math.abs(leaf.getHeight() - height) > 1e-8) {
Log.warning.println("WARNING: Calibrated Yule Model cannot handle dated tips. Use for example a coalescent prior instead.");
break;
}
}
}
use of beast.evolution.alignment.TaxonSet in project beast2 by CompEvol.
the class TraitSetTest method taxonSet.
public TaxonSet taxonSet(int Nleaves) {
List<Sequence> seqList = new ArrayList<Sequence>();
for (int i = 0; i < Nleaves; i++) {
String taxonID = "t" + i;
seqList.add(new Sequence(taxonID, "?"));
}
Alignment alignment = new Alignment(seqList, "nucleotide");
TaxonSet taxonSet = new TaxonSet(alignment);
return taxonSet;
}
use of beast.evolution.alignment.TaxonSet in project beast2 by CompEvol.
the class NodeReheight method initAndValidate.
@Override
public void initAndValidate() {
/**
* maps gene taxa names to species number *
*/
final Map<String, Integer> taxonMap = new HashMap<>();
final List<Taxon> list = taxonSetInput.get().taxonsetInput.get();
if (list.size() <= 1) {
Log.err.println("NodeReheight operator requires at least 2 taxa while the taxon set (id=" + taxonSetInput.get().getID() + ") has only " + list.size() + " taxa. " + "If the XML file was set up in BEAUti, this probably means a taxon assignment needs to be set up in the taxonset panel.");
// assume we are in BEAUti, back off for now
return;
}
for (int i = 0; i < list.size(); i++) {
final Taxon taxa = list.get(i);
// cast should be ok if taxon-set is the set for the species tree
final TaxonSet set = (TaxonSet) taxa;
for (final Taxon taxon : set.taxonsetInput.get()) {
taxonMap.put(taxon.getID(), i);
}
}
/**
* build the taxon map for each gene tree *
*/
m_taxonMap = new ArrayList<>();
for (final Tree tree : geneTreesInput.get()) {
final Map<Integer, Integer> map = new HashMap<>();
setupTaxaMap(tree.getRoot(), map, taxonMap);
m_taxonMap.add(map);
}
nrOfGeneTrees = geneTreesInput.get().size();
nrOfSpecies = treeInput.get().getLeafNodeCount();
}
Aggregations