use of boofcv.struct.distort.Point2Transform2_F64 in project BoofCV by lessthanoptimal.
the class FiducialDetectorPnP method setLensDistortion.
@Override
public void setLensDistortion(@Nullable LensDistortionNarrowFOV distortion, int width, int height) {
if (distortion != null) {
this.hasCameraModel = true;
this.lensDistortion = distortion;
this.pixelToNorm = lensDistortion.undistort_F64(true, false);
Point2Transform2_F64 normToPixel = lensDistortion.distort_F64(false, true);
stability.setTransforms(pixelToNorm, normToPixel);
} else {
this.hasCameraModel = false;
this.lensDistortion = null;
this.pixelToNorm = null;
}
}
use of boofcv.struct.distort.Point2Transform2_F64 in project BoofCV by lessthanoptimal.
the class MicroQrCodeDetectorPnP method setLensDistortion.
@Override
public void setLensDistortion(@Nullable LensDistortionNarrowFOV distortion, int width, int height) {
super.setLensDistortion(distortion, width, height);
if (distortion == null) {
poseUtils.setLensDistortion(null, null);
// Yes this shouldn't be hard coded to that type. It feels dirty adding lens distortion to the
// generic QR Code detector... deal with this later if there is more than one detector
((MicroQrCodePreciseDetector) detector).setLensDistortion(width, height, null);
} else {
Point2D_F64 test = new Point2D_F64();
Point2Transform2_F64 undistToDist = distortion.distort_F64(true, true);
undistToDist.compute(0, 0, test);
poseUtils.setLensDistortion(distortion.undistort_F64(true, false), undistToDist);
// If there's no actual distortion don't undistort the image while processing. Faster this way
if (test.norm() <= UtilEjml.TEST_F32) {
((MicroQrCodePreciseDetector) detector).setLensDistortion(width, height, null);
} else {
((MicroQrCodePreciseDetector) detector).setLensDistortion(width, height, distortion);
}
}
}
use of boofcv.struct.distort.Point2Transform2_F64 in project BoofCV by lessthanoptimal.
the class ExampleMultiBaselineStereo method main.
public static void main(String[] args) {
// Compute a sparse reconstruction. This will give us intrinsic and extrinsic for all views
var example = new ExampleMultiViewSparseReconstruction();
// Specifies the "center" frame to use
int centerViewIdx = 15;
example.compute("tree_snow_01.mp4", true);
// example.compute("ditch_02.mp4", true);
// example.compute("holiday_display_01.mp4"", true);
// example.compute("log_building_02.mp4"", true);
// example.compute("drone_park_01.mp4", false);
// example.compute("stone_sign.mp4", true);
// We need a way to load images based on their ID. In this particular case the ID encodes the array index.
var imageLookup = new LookUpImageFilesByIndex(example.imageFiles);
// Next we tell it which view to use as the "center", which acts as the common view for all disparity images.
// The process of selecting the best views to use as centers is a problem all it's own. To keep things
// we just pick a frame.
SceneWorkingGraph.View center = example.working.getAllViews().get(centerViewIdx);
// The final scene refined by bundle adjustment is created by the Working graph. However the 3D relationship
// between views is contained in the pairwise graph. A View in the working graph has a reference to the view
// in the pairwise graph. Using that we will find all connected views that have a 3D relationship
var pairedViewIdxs = new DogArray_I32();
var sbaIndexToImageID = new TIntObjectHashMap<String>();
// This relationship between pairwise and working graphs might seem (and is) a bit convoluted. The Pairwise
// graph is the initial crude sketch of what might be connected. The working graph is an intermediate
// data structure for computing the metric scene. SBA is a refinement of the working graph.
// Iterate through all connected views in the pairwise graph and mark their indexes in the working graph
center.pview.connections.forEach((m) -> {
// if there isn't a 3D relationship just skip it
if (!m.is3D)
return;
String connectedID = m.other(center.pview).id;
SceneWorkingGraph.View connected = example.working.views.get(connectedID);
// Make sure the pairwise view exists in the working graph too
if (connected == null)
return;
// Add this view to the index to name/ID lookup table
sbaIndexToImageID.put(connected.index, connectedID);
// Note that this view is one which acts as the second image in the stereo pair
pairedViewIdxs.add(connected.index);
});
// Add the center camera image to the ID look up table
sbaIndexToImageID.put(centerViewIdx, center.pview.id);
// Configure there stereo disparity algorithm which is used
var configDisparity = new ConfigDisparityBMBest5();
configDisparity.validateRtoL = 1;
configDisparity.texture = 0.5;
configDisparity.regionRadiusX = configDisparity.regionRadiusY = 4;
configDisparity.disparityRange = 120;
// This is the actual MBS algorithm mentioned previously. It selects the best disparity for each pixel
// in the original image using a median filter.
var multiBaseline = new MultiBaselineStereoIndependent<>(imageLookup, ImageType.SB_U8);
multiBaseline.setStereoDisparity(FactoryStereoDisparity.blockMatchBest5(configDisparity, GrayU8.class, GrayF32.class));
// Print out verbose debugging and profile information
multiBaseline.setVerbose(System.out, null);
multiBaseline.setVerboseProfiling(System.out);
// Improve stereo by removing small regions, which tends to be noise. Consider adjusting the region size.
multiBaseline.setDisparitySmoother(FactoryStereoDisparity.removeSpeckle(null, GrayF32.class));
// Print out debugging information from the smoother
// Objects.requireNonNull(multiBaseline.getDisparitySmoother()).setVerbose(System.out,null);
// Creates a list where you can switch between different images/visualizations
var listDisplay = new ListDisplayPanel();
listDisplay.setPreferredSize(new Dimension(1000, 300));
ShowImages.showWindow(listDisplay, "Intermediate Results", true);
// We will display intermediate results as they come in
multiBaseline.setListener((leftView, rightView, rectLeft, rectRight, disparity, mask, parameters, rect) -> {
// Visualize the rectified stereo pair. You can interact with this window and verify
// that the y-axis is aligned
var rectified = new RectifiedPairPanel(true);
rectified.setImages(ConvertBufferedImage.convertTo(rectLeft, null), ConvertBufferedImage.convertTo(rectRight, null));
// Cleans up the disparity image by zeroing out pixels that are outside the original image bounds
RectifyImageOps.applyMask(disparity, mask, 0);
// Display the colorized disparity
BufferedImage colorized = VisualizeImageData.disparity(disparity, null, parameters.disparityRange, 0);
SwingUtilities.invokeLater(() -> {
listDisplay.addItem(rectified, "Rectified " + leftView + " " + rightView);
listDisplay.addImage(colorized, leftView + " " + rightView);
});
});
// Process the images and compute a single combined disparity image
if (!multiBaseline.process(example.scene, center.index, pairedViewIdxs, sbaIndexToImageID::get)) {
throw new RuntimeException("Failed to fuse stereo views");
}
// Extract the point cloud from the fused disparity image
GrayF32 fusedDisparity = multiBaseline.getFusedDisparity();
DisparityParameters fusedParam = multiBaseline.getFusedParam();
BufferedImage colorizedDisp = VisualizeImageData.disparity(fusedDisparity, null, fusedParam.disparityRange, 0);
ShowImages.showWindow(colorizedDisp, "Fused Disparity");
// Now compute the point cloud it represents and the color of each pixel.
// For the fused image, instead of being in rectified image coordinates it's in the original image coordinates
// this makes extracting color much easier.
var cloud = new DogArray<>(Point3D_F64::new);
var cloudRgb = new DogArray_I32(cloud.size);
// Load the center image in color
var colorImage = new InterleavedU8(1, 1, 3);
imageLookup.loadImage(center.pview.id, colorImage);
// Since the fused image is in the original (i.e. distorted) pixel coordinates and is not rectified,
// that needs to be taken in account by undistorting the image to create the point cloud.
CameraPinholeBrown intrinsic = BundleAdjustmentOps.convert(example.scene.cameras.get(center.cameraIdx).model, colorImage.width, colorImage.height, null);
Point2Transform2_F64 pixel_to_norm = new LensDistortionBrown(intrinsic).distort_F64(true, false);
MultiViewStereoOps.disparityToCloud(fusedDisparity, fusedParam, new PointToPixelTransform_F64(pixel_to_norm), (pixX, pixY, x, y, z) -> {
cloud.grow().setTo(x, y, z);
cloudRgb.add(colorImage.get24(pixX, pixY));
});
// Configure the point cloud viewer
PointCloudViewer pcv = VisualizeData.createPointCloudViewer();
pcv.setCameraHFov(UtilAngle.radian(70));
pcv.setTranslationStep(0.15);
pcv.addCloud(cloud.toList(), cloudRgb.data);
// pcv.setColorizer(new SingleAxisRgb.Z().fperiod(30.0));
JComponent viewer = pcv.getComponent();
viewer.setPreferredSize(new Dimension(600, 600));
ShowImages.showWindow(viewer, "Point Cloud", true);
System.out.println("Done");
}
use of boofcv.struct.distort.Point2Transform2_F64 in project BoofCV by lessthanoptimal.
the class ExamplePnP method createObservations.
/**
* Generates synthetic observations randomly in front of the camera. Observations are in normalized image
* coordinates and not pixels! See {@link PerspectiveOps#convertPixelToNorm} for how to go from pixels
* to normalized image coordinates.
*/
public List<Point2D3D> createObservations(Se3_F64 worldToCamera, int total) {
Se3_F64 cameraToWorld = worldToCamera.invert(null);
// transform from pixel coordinates to normalized pixel coordinates, which removes lens distortion
Point2Transform2_F64 pixelToNorm = LensDistortionFactory.narrow(intrinsic).undistort_F64(true, false);
List<Point2D3D> observations = new ArrayList<>();
Point2D_F64 norm = new Point2D_F64();
for (int i = 0; i < total; i++) {
// randomly pixel a point inside the image
double x = rand.nextDouble() * intrinsic.width;
double y = rand.nextDouble() * intrinsic.height;
// Convert to normalized image coordinates because that's what PNP needs.
// it can't process pixel coordinates
pixelToNorm.compute(x, y, norm);
// Randomly pick a depth and compute 3D coordinate
double Z = rand.nextDouble() + 4;
double X = norm.x * Z;
double Y = norm.y * Z;
// Change the point's reference frame from camera to world
Point3D_F64 cameraPt = new Point3D_F64(X, Y, Z);
Point3D_F64 worldPt = new Point3D_F64();
SePointOps_F64.transform(cameraToWorld, cameraPt, worldPt);
// Save the perfect noise free observation
Point2D3D o = new Point2D3D();
o.getLocation().setTo(worldPt);
o.getObservation().setTo(norm.x, norm.y);
observations.add(o);
}
return observations;
}
use of boofcv.struct.distort.Point2Transform2_F64 in project BoofCV by lessthanoptimal.
the class ExampleStereoTwoViewsOneCamera method drawInliers.
/**
* Draw inliers for debugging purposes. Need to convert from normalized to pixel coordinates.
*/
public static void drawInliers(BufferedImage left, BufferedImage right, CameraPinholeBrown intrinsic, List<AssociatedPair> normalized) {
Point2Transform2_F64 n_to_p = LensDistortionFactory.narrow(intrinsic).distort_F64(false, true);
List<AssociatedPair> pixels = new ArrayList<>();
for (AssociatedPair n : normalized) {
AssociatedPair p = new AssociatedPair();
n_to_p.compute(n.p1.x, n.p1.y, p.p1);
n_to_p.compute(n.p2.x, n.p2.y, p.p2);
pixels.add(p);
}
// display the results
AssociationPanel panel = new AssociationPanel(20);
panel.setAssociation(pixels);
panel.setImages(left, right);
ShowImages.showWindow(panel, "Inlier Features", true);
}
Aggregations