Search in sources :

Example 81 with Vec2

use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.

the class RopeJoint method solveVelocityConstraints.

@Override
public void solveVelocityConstraints(final SolverData data) {
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    // Cdot = dot(u, v + cross(w, r))
    Vec2 vpA = pool.popVec2();
    Vec2 vpB = pool.popVec2();
    Vec2 temp = pool.popVec2();
    Vec2.crossToOutUnsafe(wA, m_rA, vpA);
    vpA.addLocal(vA);
    Vec2.crossToOutUnsafe(wB, m_rB, vpB);
    vpB.addLocal(vB);
    float C = m_length - m_maxLength;
    float Cdot = Vec2.dot(m_u, temp.set(vpB).subLocal(vpA));
    // Predictive constraint.
    if (C < 0.0f) {
        Cdot += data.step.inv_dt * C;
    }
    float impulse = -m_mass * Cdot;
    float oldImpulse = m_impulse;
    m_impulse = Math.min(0.0f, m_impulse + impulse);
    impulse = m_impulse - oldImpulse;
    float Px = impulse * m_u.x;
    float Py = impulse * m_u.y;
    vA.x -= m_invMassA * Px;
    vA.y -= m_invMassA * Py;
    wA -= m_invIA * (m_rA.x * Py - m_rA.y * Px);
    vB.x += m_invMassB * Px;
    vB.y += m_invMassB * Py;
    wB += m_invIB * (m_rB.x * Py - m_rB.y * Px);
    pool.pushVec2(3);
    // data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2)

Example 82 with Vec2

use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.

the class WeldJoint method solvePositionConstraints.

@Override
public boolean solvePositionConstraints(final SolverData data) {
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    final Vec2 rA = pool.popVec2();
    final Vec2 rB = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
    float positionError, angularError;
    final Mat33 K = pool.popMat33();
    final Vec2 C1 = pool.popVec2();
    final Vec2 P = pool.popVec2();
    K.ex.x = mA + mB + rA.y * rA.y * iA + rB.y * rB.y * iB;
    K.ey.x = -rA.y * rA.x * iA - rB.y * rB.x * iB;
    K.ez.x = -rA.y * iA - rB.y * iB;
    K.ex.y = K.ey.x;
    K.ey.y = mA + mB + rA.x * rA.x * iA + rB.x * rB.x * iB;
    K.ez.y = rA.x * iA + rB.x * iB;
    K.ex.z = K.ez.x;
    K.ey.z = K.ez.y;
    K.ez.z = iA + iB;
    if (m_frequencyHz > 0.0f) {
        C1.set(cB).addLocal(rB).subLocal(cA).subLocal(rA);
        positionError = C1.length();
        angularError = 0.0f;
        K.solve22ToOut(C1, P);
        P.negateLocal();
        cA.x -= mA * P.x;
        cA.y -= mA * P.y;
        aA -= iA * Vec2.cross(rA, P);
        cB.x += mB * P.x;
        cB.y += mB * P.y;
        aB += iB * Vec2.cross(rB, P);
    } else {
        C1.set(cB).addLocal(rB).subLocal(cA).subLocal(rA);
        float C2 = aB - aA - m_referenceAngle;
        positionError = C1.length();
        angularError = FXGLMath.abs(C2);
        final Vec3 C = pool.popVec3();
        final Vec3 impulse = pool.popVec3();
        C.set(C1.x, C1.y, C2);
        K.solve33ToOut(C, impulse);
        impulse.negateLocal();
        P.set(impulse.x, impulse.y);
        cA.x -= mA * P.x;
        cA.y -= mA * P.y;
        aA -= iA * (Vec2.cross(rA, P) + impulse.z);
        cB.x += mB * P.x;
        cB.y += mB * P.y;
        aB += iB * (Vec2.cross(rB, P) + impulse.z);
        pool.pushVec3(2);
    }
    // data.positions[m_indexA].c.set(cA);
    data.positions[m_indexA].a = aA;
    // data.positions[m_indexB].c.set(cB);
    data.positions[m_indexB].a = aB;
    pool.pushVec2(5);
    pool.pushRot(2);
    pool.pushMat33(1);
    return positionError <= JBoxSettings.linearSlop && angularError <= JBoxSettings.angularSlop;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Vec3(com.almasb.fxgl.core.math.Vec3) Mat33(com.almasb.fxgl.physics.box2d.common.Mat33) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 83 with Vec2

use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.

the class WeldJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(final SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    // Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    // Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective masses.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), m_rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), m_rB);
    // J = [-I -r1_skew I r2_skew]
    // [ 0 -1 0 1]
    // r_skew = [-ry; rx]
    // Matlab
    // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
    // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
    // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;
    final Mat33 K = pool.popMat33();
    K.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB;
    K.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB;
    K.ez.x = -m_rA.y * iA - m_rB.y * iB;
    K.ex.y = K.ey.x;
    K.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB;
    K.ez.y = m_rA.x * iA + m_rB.x * iB;
    K.ex.z = K.ez.x;
    K.ey.z = K.ez.y;
    K.ez.z = iA + iB;
    if (m_frequencyHz > 0.0f) {
        K.getInverse22(m_mass);
        float invM = iA + iB;
        float m = invM > 0.0f ? 1.0f / invM : 0.0f;
        float C = aB - aA - m_referenceAngle;
        // Frequency
        float omega = 2.0f * (float) FXGLMath.PI * m_frequencyHz;
        // Damping coefficient
        float d = 2.0f * m * m_dampingRatio * omega;
        // Spring stiffness
        float k = m * omega * omega;
        // magic formulas
        float h = data.step.dt;
        m_gamma = h * (d + h * k);
        m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f;
        m_bias = C * h * k * m_gamma;
        invM += m_gamma;
        m_mass.ez.z = invM != 0.0f ? 1.0f / invM : 0.0f;
    } else {
        K.getSymInverse33(m_mass);
        m_gamma = 0.0f;
        m_bias = 0.0f;
    }
    if (data.step.warmStarting) {
        final Vec2 P = pool.popVec2();
        // Scale impulses to support a variable time step.
        m_impulse.mulLocal(data.step.dtRatio);
        P.set(m_impulse.x, m_impulse.y);
        vA.x -= mA * P.x;
        vA.y -= mA * P.y;
        wA -= iA * (Vec2.cross(m_rA, P) + m_impulse.z);
        vB.x += mB * P.x;
        vB.y += mB * P.y;
        wB += iB * (Vec2.cross(m_rB, P) + m_impulse.z);
        pool.pushVec2(1);
    } else {
        m_impulse.setZero();
    }
    // data.velocities[m_indexA].v.set(vA);
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v.set(vB);
    data.velocities[m_indexB].w = wB;
    pool.pushVec2(1);
    pool.pushRot(2);
    pool.pushMat33(1);
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Mat33(com.almasb.fxgl.physics.box2d.common.Mat33) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 84 with Vec2

use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.

the class WheelJoint method initVelocityConstraints.

@Override
public void initVelocityConstraints(SolverData data) {
    m_indexA = m_bodyA.m_islandIndex;
    m_indexB = m_bodyB.m_islandIndex;
    m_localCenterA.set(m_bodyA.m_sweep.localCenter);
    m_localCenterB.set(m_bodyB.m_sweep.localCenter);
    m_invMassA = m_bodyA.m_invMass;
    m_invMassB = m_bodyB.m_invMass;
    m_invIA = m_bodyA.m_invI;
    m_invIB = m_bodyB.m_invI;
    float mA = m_invMassA, mB = m_invMassB;
    float iA = m_invIA, iB = m_invIB;
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 vA = data.velocities[m_indexA].v;
    float wA = data.velocities[m_indexA].w;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    Vec2 vB = data.velocities[m_indexB].v;
    float wB = data.velocities[m_indexB].w;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    // Compute the effective masses.
    Rotation.mulToOutUnsafe(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rotation.mulToOutUnsafe(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
    d.set(cB).addLocal(rB).subLocal(cA).subLocal(rA);
    // Point to line constraint
    {
        Rotation.mulToOut(qA, m_localYAxisA, m_ay);
        m_sAy = Vec2.cross(temp.set(d).addLocal(rA), m_ay);
        m_sBy = Vec2.cross(rB, m_ay);
        m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy;
        if (m_mass > 0.0f) {
            m_mass = 1.0f / m_mass;
        }
    }
    // Spring constraint
    m_springMass = 0.0f;
    m_bias = 0.0f;
    m_gamma = 0.0f;
    if (m_frequencyHz > 0.0f) {
        Rotation.mulToOut(qA, m_localXAxisA, m_ax);
        m_sAx = Vec2.cross(temp.set(d).addLocal(rA), m_ax);
        m_sBx = Vec2.cross(rB, m_ax);
        float invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx;
        if (invMass > 0.0f) {
            m_springMass = 1.0f / invMass;
            float C = Vec2.dot(d, m_ax);
            // Frequency
            float omega = 2.0f * (float) FXGLMath.PI * m_frequencyHz;
            // Damping coefficient
            float d = 2.0f * m_springMass * m_dampingRatio * omega;
            // Spring stiffness
            float k = m_springMass * omega * omega;
            // magic formulas
            float h = data.step.dt;
            m_gamma = h * (d + h * k);
            if (m_gamma > 0.0f) {
                m_gamma = 1.0f / m_gamma;
            }
            m_bias = C * h * k * m_gamma;
            m_springMass = invMass + m_gamma;
            if (m_springMass > 0.0f) {
                m_springMass = 1.0f / m_springMass;
            }
        }
    } else {
        m_springImpulse = 0.0f;
    }
    // Rotational motor
    if (m_enableMotor) {
        m_motorMass = iA + iB;
        if (m_motorMass > 0.0f) {
            m_motorMass = 1.0f / m_motorMass;
        }
    } else {
        m_motorMass = 0.0f;
        m_motorImpulse = 0.0f;
    }
    if (data.step.warmStarting) {
        final Vec2 P = pool.popVec2();
        // Account for variable time step.
        m_impulse *= data.step.dtRatio;
        m_springImpulse *= data.step.dtRatio;
        m_motorImpulse *= data.step.dtRatio;
        P.x = m_impulse * m_ay.x + m_springImpulse * m_ax.x;
        P.y = m_impulse * m_ay.y + m_springImpulse * m_ax.y;
        float LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse;
        float LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse;
        vA.x -= m_invMassA * P.x;
        vA.y -= m_invMassA * P.y;
        wA -= m_invIA * LA;
        vB.x += m_invMassB * P.x;
        vB.y += m_invMassB * P.y;
        wB += m_invIB * LB;
        pool.pushVec2(1);
    } else {
        m_impulse = 0.0f;
        m_springImpulse = 0.0f;
        m_motorImpulse = 0.0f;
    }
    pool.pushRot(2);
    pool.pushVec2(1);
    // data.velocities[m_indexA].v = vA;
    data.velocities[m_indexA].w = wA;
    // data.velocities[m_indexB].v = vB;
    data.velocities[m_indexB].w = wB;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Example 85 with Vec2

use of com.almasb.fxgl.core.math.Vec2 in project FXGL by AlmasB.

the class WheelJoint method solvePositionConstraints.

@Override
public boolean solvePositionConstraints(SolverData data) {
    Vec2 cA = data.positions[m_indexA].c;
    float aA = data.positions[m_indexA].a;
    Vec2 cB = data.positions[m_indexB].c;
    float aB = data.positions[m_indexB].a;
    final Rotation qA = pool.popRot();
    final Rotation qB = pool.popRot();
    final Vec2 temp = pool.popVec2();
    qA.set(aA);
    qB.set(aB);
    Rotation.mulToOut(qA, temp.set(m_localAnchorA).subLocal(m_localCenterA), rA);
    Rotation.mulToOut(qB, temp.set(m_localAnchorB).subLocal(m_localCenterB), rB);
    d.set(cB).subLocal(cA).addLocal(rB).subLocal(rA);
    Vec2 ay = pool.popVec2();
    Rotation.mulToOut(qA, m_localYAxisA, ay);
    float sAy = Vec2.cross(temp.set(d).addLocal(rA), ay);
    float sBy = Vec2.cross(rB, ay);
    float C = Vec2.dot(d, ay);
    float k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy;
    float impulse;
    if (k != 0.0f) {
        impulse = -C / k;
    } else {
        impulse = 0.0f;
    }
    final Vec2 P = pool.popVec2();
    P.x = impulse * ay.x;
    P.y = impulse * ay.y;
    float LA = impulse * sAy;
    float LB = impulse * sBy;
    cA.x -= m_invMassA * P.x;
    cA.y -= m_invMassA * P.y;
    aA -= m_invIA * LA;
    cB.x += m_invMassB * P.x;
    cB.y += m_invMassB * P.y;
    aB += m_invIB * LB;
    pool.pushVec2(3);
    pool.pushRot(2);
    // data.positions[m_indexA].c = cA;
    data.positions[m_indexA].a = aA;
    // data.positions[m_indexB].c = cB;
    data.positions[m_indexB].a = aB;
    return FXGLMath.abs(C) <= JBoxSettings.linearSlop;
}
Also used : Vec2(com.almasb.fxgl.core.math.Vec2) Rotation(com.almasb.fxgl.physics.box2d.common.Rotation)

Aggregations

Vec2 (com.almasb.fxgl.core.math.Vec2)138 Rotation (com.almasb.fxgl.physics.box2d.common.Rotation)36 Point2D (javafx.geometry.Point2D)7 Mat22 (com.almasb.fxgl.physics.box2d.common.Mat22)6 Body (com.almasb.fxgl.physics.box2d.dynamics.Body)6 Rectangle (javafx.scene.shape.Rectangle)6 GameApplication (com.almasb.fxgl.app.GameApplication)5 Vec3 (com.almasb.fxgl.core.math.Vec3)5 AABB (com.almasb.fxgl.physics.box2d.collision.AABB)5 ManifoldPoint (com.almasb.fxgl.physics.box2d.collision.ManifoldPoint)5 VelocityConstraintPoint (com.almasb.fxgl.physics.box2d.dynamics.contacts.ContactVelocityConstraint.VelocityConstraintPoint)5 Rectangle2D (javafx.geometry.Rectangle2D)5 Color (javafx.scene.paint.Color)5 Interpolators (com.almasb.fxgl.animation.Interpolators)4 GameSettings (com.almasb.fxgl.app.GameSettings)4 FXGL (com.almasb.fxgl.dsl.FXGL)4 ImagesKt (com.almasb.fxgl.texture.ImagesKt)4 Comparator (java.util.Comparator)4 List (java.util.List)4 Collectors (java.util.stream.Collectors)4